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Abstract – A sensorless active damping scheme for LCL filters in grid-connected parallel inverters 
for battery energy storage systems is proposed. This damping method is superior to the conventional 
notch filter and virtual damping methods with respect to robustness against the variation of the 
resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the 
proposed damping method is explained in detail, along with the characteristic comparison to the 
conventional active damping methods. The performance verification of the proposed sensorless active 
damping method shows that its performance is comparable to that of the conventional virtual damping 
method, even without additional current sensors. Finally, simulation and experimental results are 
provided to examine the overall characteristics of the proposed method.
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1. Introduction

As power consumption increases, it places a great 
burden on a power plant, requiring expansion of the power 
plant. However, this expansion is difficult because of the 
enormous cost and location problems. A battery energy 
storage system (BESS) is used to solve this problem. A 
BESS is composed of a battery, grid-connected inverter, 
and low-pass filter between the inverter and the grid. The 
required capacity of the BESS varies based on scale and 
purpose; the parallel structure of grid-connected inverters 
shown in Fig. 1 is widely considered a good solution 
because of its expandability and the convenience of repair. 
A grid-connected inverter, one of the core units of a BESS, 
causes higher harmonics by pulse width modulation (PWM) 
switching; Therefore, LCL filters are usually adopted to 
mitigate the inverter switching ripples. However, if the 
inverters are not properly controlled, the inherent resonances
of the filters can cause serious power quality and stability 
problems. To solve this problem, both passive damping 
and active damping methods have been implemented [1-6].

In the passive damping method, a physical resistance 
is inserted into the LCL filter to reduce the resonance 
phenomenon. The drawback is that efficiency is reduced 
because of an increase in circuit loss; however, resonance 
suppression performance is excellent. In general, a resistor 
is added in series or parallel to the filter capacitor, or a 
resistor is added in parallel to the converter-side inductor 
or the grid-side inductor. Passive damping has a significant 

influence not only on the resonance suppression effect 
and system efficiency, but also on harmonic reduction 
performance according to the damping circuit configuration. 
The frequency component where resonance occurs without 
the performance degradation of the LCL filter is ideal. 
However, actual passive damping methods affect the 
harmonic suppression performance of the original LCL 
filter because it affects in all frequency domains [2, 7-9].

Unlike passive damping, active damping can suppress 
the resonances without additional losses for the filter; 
therefore, it is increasingly applied to improve system 
performance. Active damping is classified into two 
methods: multi loop active damping and filter-based active 
damping. Filter-based active damping is implemented by 
an additional filter on the control loop, and an additional 
sensor is unnecessary. In particular, a notch filter is widely 
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Fig. 1. Configuration of parallel connected inverters with 
LCL-filters
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adopted for its simplicity and damping quality. In multi 
loop active damping, the virtual resistor method is widely 
adopted. The virtual resistor method can reduce the effect 
of resonance through the feedback loop which includes 
voltage or current sensing of the filter capacitor branch 
[10-12].

For parallel-connected inverters, the variation of the 
frequency response and resonant frequency can cause 
much more deterioration of power quality and stability 
problems according to parameters such as the variation of 
the inductance or resonant frequency. Therefore, notch 
filter active damping is not suitable for parallel-connected 
inverters, because it requires accurate resonant frequency. 
Further, in the virtual resistor method, although it is robust 
for inaccuracy of the resonant frequency, additional sensors 
are necessary and the number of sensors increases in 
proportion to the number of inverters, resulting in 
increased system manufacturing cost [13, 14].

Therefore, we propose a virtual resistor method without 
additional sensors, called the sensorless active damping 
method. In this damping method, the filter capacitor 
current is calculated by the synthesis of the grid voltage 
and grid inductor current instead of the direct use of the 
sensing value in the conventional damping method. The 
theoretical analysis of the proposed damping method is 
explained in detail, along with the characteristic 
comparison to the conventional active damping methods. 
Through the performance verification of the proposed 
sensorless active damping method, it is noted that the 
performance is comparable to the conventional virtual 
damping method, even without additional current sensors. 
Finally, informative simulation and experimental results 
are provided to examine the overall characteristics of the 
proposed method.

2. Modeling of Parallel Connected Inverters

Fig. 2 shows the circuit diagram of a single inverter. 
The inverter is connected to the grid through the LCL 
filter. An ideal utility grid voltage does not have high-order 
harmonic components. Therefore, it can be treated as a 
short circuit in the high-frequency band. It can be presented 
through the Thevenin equivalent model and Fig. 3 shows 
the Thevenin equivalent model of a single grid-connected 
inverter with an LCL filter. The Thevenin voltage and 
impedance are as follows:

Fig. 3. Thevenin equivalent model of a single grid-
connected inverter

Fig. 4. Thevenin equivalent model of parallel-connected 
inverters with LCL-filters
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Fig. 4 shows the grid-connected inverter connected in 
parallel. Assuming each inverter is configured with the 
same hardware and software, the grid-side inductor 
currents of all inverters are the same. Therefore, the grid-
side inductor current ( Lgi ) is expressed as Eq. (4).
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Therefore, the admittance to the grid-side inductor 
current is calculated using Eqs. (1) - (4) as follows:
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As can be seen in Eq. (6), the resonance frequency ( rw ) 
of the plant LCLY  depends on the number of inverters n. 
The expression is as follows:Fig. 2. Circuit diagram of a single grid-connected inverter
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Fig. 5 shows the variation of admittance according to the 
number of parallel-connected inverters. As shown in Fig. 5, 
the resonant frequency decreases as the number of parallel 
connected inverters n increases.

3. Proposed Active Damping Method Without 

Additional Sensor

3.1 Conventional active damping methods

The block diagram of the notch filter active damping 

method is shown in Fig. 6. The output of the current 
controller contains the resonance components, and it is 
simply damped by adding a notch filter, which is the 
band-reject filter. Therefore, accurate calculation of resonant
frequency is essential, and inaccuracy of the resonant 
frequency causes the serious problem for the system 
stability. This problem can be solved by wide band 
frequency design. However, it could cause the phase delay 
to be large below the resonant frequency and the filtering 
performance is deteriorated.

In contrast, the virtual resistor active damping method, 
which is shown in Fig. 7, is robust against parameter 
variation. Resonant peak attenuation is carried out by 
sensing the filter capacitor current (icf ) through the current 
sensors, multiplying Hv, and adding the result of the current 
controller. This process is identical to generating the 
voltage reference in the case of the passive damping 
method using a real resistor that connected in parallel with 
the filter capacitor.

3.2 Proposed active damping method

As explained above, although the conventional virtual 
resistor method is superior to the notch filter with respect 
to the robustness of the variation of the resonance 
frequency, it should use additional sensors. To overcome 
this problem, a sensorless active damping scheme is 
proposed as follows.
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(8)Fig. 5. Variation of admittance of conventional parallel 

connected inverters
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Fig. 6. Block diagram of the conventional notch filter active damping method
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Fig. 9. Admittance of parallel connected inverters with 
notch filter method

Fig. 10. Admittance of parallel connected inverters with 
proposed sensorless active damping method

The instantaneous value of the filter capacitor current is 
required to apply the virtual resistor method. Therefore, the 
filter capacitor current should be synthesized by using Vgrid

and ILg. This process can be expressed by Eq. (8).
Using Eq. (8), the proposed sensorless active damping 

method can be implemented as show in Fig. 8. The hat 
operator represents the synthesized values. In Fig. 8, it is 
noted that the filter capacitor current can be successfully 
obtained without sensing the actual current by current 
sensor.

As shown in Eq. (8), the synthesis is composed to the 
differential form. In particular, the sampling frequency 
should be over four times the switching frequency, as per 
the Nyquist sampling theory for accurate synthesis of the 
capacitor current because the process includes the 
bidifferential. Further, the sampling frequency is very 
low compared with the fundamental frequency of the 
grid; therefore, the phase delay between the real capacitor 
current value and synthesized value of the resonant 
frequency can be neglected.
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The admittance of the LCL filter on the proposed 
damping method is expressed by Eqs. (9) and (10). When 
Hv is constant, Zv can be equivalent to the resistor which is 
a frequency-invariant passive component. This means that 
Hv determines the amplitude of the virtual damping resistor. 
Figs. 9 and 10 show the performance examination of the 
proposed sensorless active damping method, compared to 
the conventional notch filter damping method in parallel 
connected inverters. As shown in Fig. 9, in the case of the 
notch filter, as the number of parallel connected inverters is 
increased, the resonant peak is not attenuated and becomes 
higher. On comparing Fig. 9 with the proposed sensorless 
active damping method shown in Fig. 10, it can be noted 
that the resonant peak is successfully attenuated with 
multiple parallel inverters.

4. Verification of the Proposed Active Damping 

Method 

4.1 Simulation results

To verify the validity of the proposed method, 
simulation was carried out. The simulation parameters are 
summarized in Table 1. The estimated capacitor current 
and actual capacitor current are shown in Fig. 11. Even
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Fig. 8. Block diagram of proposed sensorless damping method
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Fig. 12. Simulation waveforms of 8-parallel-connected
inverter with conventional notch filter method

Fig. 13. Simulation waveforms of 8-parallel-connected 
inverter with conventional virtual resistor method

though there is the delay (13 µs) between the estimation
and actual value, it is sufficiently short in comparison 
with the grid frequency, 60 Hz. Figs. 12, 13, and 14 
present the performance comparison of the conventional 
and the proposed active damping methods. As shown in 
Fig. 14, the proposed sensorless active damping method 
is comparable to the conventional virtual damping 
method, while the notch filter method does not meet the 
performance requirement in the multi-parallel inverters. 

Fig. 14. Simulation waveforms of 8-parallel-connected 
inverter with proposed active damping method

Fig. 15. Experimental results of the 3-parallel connected 
inverter with proposed active damping method

Table 1. System parameters of inverter system

Parameter Value

DC-Link Voltage (VDC) 650 V

Grid Voltage (Vgrid) 380 VLL

Switching Frequency (fsw) 20 kHz

Inverter-side Inductor (Li) 800 uH

Grid-side Inductor (Lg) 300uH

Filter Capacitor (Cf) 4.7 uF

Line Inductance (Lgrid) 100 uH

Sampling Frequency (fsample) 100 kHz

Zv 170.2 Ω

Hv 1

Fig. 11. Estimated capacitor current and actual capacitor current
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4.2 Experimental results

The specification of the prototype system is the same 
as the simulation, presented in Table 1. The system is 
composed of 3-parallel-connected inverters. In the 
condition of a 6.6-kW load, the experimental waveform is 
shown in Fig. 15. 

The average THDi of the output currents is 3.66%, as 
measured by a power analyzer. Therefore, the proposed 
active damping method is reasonable for the damping of 
parallel connected inverters for grid-connected inverters.

5. Conclusion

An active damping method without additional sensors 
was proposed and its validity was verified through 
simulation and experiments. The performance of the 
proposed method was comparatively analyzed with two 
conventional methods. The results indicate that, in the 
proposed method, the capacitor current is comparably 
synthesized without an additional sensor, and the damping 
performance is equal to that of the conventional virtual 
resistor method. The proposed active damping method 
can be used for grid-connected inverters with parallel 
connections for various applications such as the BESS and 
renewable energy sources.
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