• Title/Summary/Keyword: gravity vector

Search Result 52, Processing Time 0.021 seconds

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components (구면 스레피안 함수로 표현된 지각 자기이상값과 구배 성분)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.269-280
    • /
    • 2016
  • I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.

An recognition of printed chinese character using neural network (신경망을 이용한 인쇄체 한자의 인식)

  • 이성범;오종욱;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1269-1282
    • /
    • 1993
  • In this paper, we propose to method of recognizing printed chinese characters which combine the coventional deterministic methods and the neural networks. Firstly, we extract four directional vector of strokes from chinese characters. Secondly, we make the mesh of the center of gravity in the vector and then constitute the H x8 feature matrix using black pixel lenth from each meshs. This normalized feature matrix value offer as the input of neural network for classifying into the 14 character types. And this calssified character classify again into Busu group by the Busu recognizing neural network. Finally, we recognize each characters using the distance of similarity between input characters and reference characters. The usefulness of the proposed algorithm is evaluated by experimenting with recognizing the chinese characters.

  • PDF

Real-time Unbalance Moment Compensation Method for Line of Sight(LOS) Stabilization Control System (시선안정화 제어시스템의 실시간 불균형 모멘트 보상기법)

  • Jo, Sihun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • This paper describes real-time unbalance moment compensation method for line of sight(LOS) stabilization control systems. The factors of system inertia, frictions and unbalance moment affect the control accuracy of drive systems that are equipped to on the move(OTM) platforms requiring LOS stabilization function. In case of the unbalance moment among those factors is continuously changed as variation of relative angle between gravity vector and drive torque vector. Then, consideration of the effect in real-time is very complicate. Therefore, its effect should be designed to be minimized, however, designing it almost zero is impossible in real condition. In other words, it is hard to achieve target performance overcoming stability issue of highly unbalanced systems. To solve these problems, this paper proposes calculation method of unbalance moment by using measured sensor data for LOS stabilization control and its use for control compensation. Also, kinematical converting process and control structure for compensation are explained. The effectiveness of the proposed method as variation of unbalance moment is verified under simulation circumstance modeled by assuming LOS control system with 2-axis gimbal structure.

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid (무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

A Method of Hand Recognition for Virtual Hand Control of Virtual Reality Game Environment (가상 현실 게임 환경에서의 가상 손 제어를 위한 사용자 손 인식 방법)

  • Kim, Boo-Nyon;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we propose a control method of virtual hand by the recognition of a user's hand in the virtual reality game environment. We display virtual hand on the game screen after getting the information of the user's hand movement and the direction thru input images by camera. We can utilize the movement of a user's hand as an input interface for virtual hand to select and move the object. As a hand recognition method based on the vision technology, the proposed method transforms input image from RGB color space to HSV color space, then segments the hand area using double threshold of H, S value and connected component analysis. Next, The center of gravity of the hand area can be calculated by 0 and 1 moment implementation of the segmented area. Since the center of gravity is positioned onto the center of the hand, the further apart pixels from the center of the gravity among the pixels in the segmented image can be recognized as fingertips. Finally, the axis of the hand is obtained as the vector of the center of gravity and the fingertips. In order to increase recognition stability and performance the method using a history buffer and a bounding box is also shown. The experiments on various input images show that our hand recognition method provides high level of accuracy and relatively fast stable results.

Performance analysis of an explicit guidance system (직접식 관성유도시스템의 성능 분석)

  • 최재원;윤용중;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.419-424
    • /
    • 1991
  • In this paper, a fuel minimizing closed loop explicit inertial guidance algorithm for the orbit injection of a rocket is developed. In this formulation, the fuel burning rate and magnitude of thrust are assumed constant, and the motion of a rocket is assumed to be subject to the average inverse-square gravity, but with negligible atmospheric effects. The optimum thrust angle for obtaining the given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vectors is determined by using Pontryagin's Maximum Principle. To establish the real time processing, many algorithms of the onboard guidance software are simplified. Simulations for the explicit guidance algorithm, for the 2nd-stage flight of the N-1 rocket, are carried out. The results show that the guidance algorithm works well in the presence of the maximum .+-.10 % initial velocity and altitude error. The effects of the guidance cycle time is also examined.

  • PDF

Gravitational effects on the microstructural evolution of GTA welds in an Al-Cu alloy (Al-Cu 합금의 GTA 용접에서 중력에 따른 미세조직 거동에 관한 연구)

  • ;Jogender Singh;Anil K. Kulkarni
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.176-178
    • /
    • 2004
  • Gas tungsten arc welds on Al-4 wt% Cu alloys were investigated to determine effects of gravitational orientation on the weld solidification behavior. Outward convection flows in the parallel-down weld might be inhibited because of its reverse direction with respect to the gravity vector. This resulted in abnormal 'S' shape of the trailing s-1 interface and the solidification rate (Vs), which was receded toward the weld pool center. Significant influence of gravitational orientation resulted in the variation on the weld pool shape associated with convection flows, which in turn affected solidification orientation/morphology and the primary dendrite spacing(λ$_1$).

  • PDF

Tracking and Recognizing Hand Gestures using Kalman Filter and Continuous Dynamic Programming (연속DP와 칼만필터를 이용한 손동작의 추적 및 인식)

  • 문인혁;금영광
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.13-16
    • /
    • 2002
  • This paper proposes a method to track hand gesture and to recognize the gesture pattern using Kalman filter and continuous dynamic programming (CDP). The positions of hands are predicted by Kalman filter, and corresponding pixels to the hands are extracted by skin color filter. The center of gravity of the hands is the same as the input pattern vector. The input gesture is then recognized by matching with the reference gesture patterns using CDP. From experimental results to recognize circle shape gesture and intention gestures such as “Come on” and “Bye-bye”, we show the proposed method is feasible to the hand gesture-based human -computer interaction.

  • PDF

A Study on the Magnetic Fluid driven by Electromagnetic Force (전자기력에 의한 자성유체의 구동에 관한 연구)

  • Nam Seong-won
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented. The shape of free surface attained by the polar fluid approach is rougher and higher than that attained by the quasi-steady approach.

  • PDF