DOI QR코드

DOI QR Code

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid

무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석

  • 남궁각 (서울대학교 대학원 기계항공공학부) ;
  • 최형권 (서울산업대학교 기계공학) ;
  • 유정열 (서울대학교 기계항공공학부)
  • Published : 2004.06.01

Abstract

The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

Keywords

References

  1. Dowell, E. H. and Hall, K. C., 2001, 'Modelling of Fluid-Structure Interaction,' Ann. Rev. Fluid Mech. Vol. 33, pp. 445-490 https://doi.org/10.1146/annurev.fluid.33.1.445
  2. Billah, K. Y. and Scanlan, R. H., 1991, 'Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks,' Am. J. Phys. Vol. 59, pp. 118-124 https://doi.org/10.1119/1.16590
  3. Strouhal, V., 1878, 'Uber Eine Besondere Art Der Tonerregung,' Annalen der Physik und Chemie (Liepzig), Neue Folge Bd.5, Heft 10, pp. 216-251 https://doi.org/10.1002/andp.18782411005
  4. Williamson, C. H. K., 1996, 'Vortex Dynamics in the Cylinder Wake,' Ann. Rev. Fluid Mech Vol. 28, pp. 477-539 https://doi.org/10.1146/annurev.fl.28.010196.002401
  5. Jayaweera, K. O. L. F., Mason, B. J. and Slack, G W., 1964, 'The Behaviour of Clusters of Spheres Falling in a Viscous Fluid: Part 1. Experiment,' J. Fluid Mech. Vol. 20, pp. 121-128 https://doi.org/10.1017/S0022112064001069
  6. Fortes, A. F., Joseph, D. D. and Lundgren, T. S., 1987, 'Nonlinear Mechanics of Fluidization of Beds of Spherical Particles,' J. Fluid Mech. Vol. 177, pp. 467-483 https://doi.org/10.1017/S0022112087001046
  7. Johnson, A. A. and Tezduyar, T. E., 1996, 'Simulation of Multiple Spheres Falling in a Liquid-Filled Tube,' Comput. Methods Appl. Mech. Engrg. Vol. 134, pp. 351-373 https://doi.org/10.1016/0045-7825(95)00988-4
  8. Glowinski, R. , Pan T. W., Hesla T. I., Joseph, D. D. and Periaux, J., 2000, 'A Distributed Lagrange Multiplier! Fictitious Domain Method for the Simulation of Flow Around Moving Rigid Bodies: Application to Particulate Flow,' Comput. Methods Appl. Mech. Engrg. Vol. 184, pp. 241-267 https://doi.org/10.1016/S0045-7825(99)00230-3
  9. Hu, H. H., Joseph, D. D. and Crochet, M. J., 1992, 'Direct Simulation of Fluid Particle Motions,' Theoret. Comput. Fluid Dynam. Vol. 3, pp. 285-306 https://doi.org/10.1007/BF00717645
  10. Feng, J., Hu, H. H. and Joseph, D. D., 1994, 'Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid: Part 1. Sedimentation,' J Fluid Mech. Vol. 261, pp. 95-134 https://doi.org/10.1017/S0022112094000285
  11. Choi, H. G, 2000, 'Splitting Method for the Combined Formulation of the Fluid-Particle Problem,' Comput. Methods Appl. Mech. Engrg. Vol. 190, pp. 1367-1378 https://doi.org/10.1016/S0045-7825(00)00164-X
  12. Chen, J. H., Pritchard, W. G. and Tavener, S. J., 1995, 'Bifurcation for Flow Past a Cylinder Between Parallel Planes,' J. Fluid Mech. Vol. 284, pp. 23-41 https://doi.org/10.1017/S0022112095000255
  13. Lei, C., Cheng, L. and Kavanagh, K., 1999, 'Reexamination of the Effect of a Plane Boundary on Force and Vortex Shedding of a Circular Cylinder,' J Wind Eng. Ind. Aerodyn. Vol. 80, pp. 263-286 https://doi.org/10.1016/S0167-6105(98)00204-9
  14. Zovatto, L. and Pedrizzetti, G., 2001, 'Flow About a Circular Cylinder Between Parallel Walls,' J. Fluid Mech. Vol. 440, 1-25 https://doi.org/10.1017/S0022112001004608
  15. Hughes, T. G. and Taylor, C., 1980, Finite Element Programming of the Navier-Stokes Equations, Swansea: Pineridge Press
  16. Hu, H. H., Patankar, N. A. and Zhu, M. Y., 2001, 'Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique,' J Comp. Phys. Vol. 169, pp. 427-462 https://doi.org/10.1006/jcph.2000.6592
  17. Nithiarasu, P. and Zienkiewicz, O. C., 2000, 'Adaptive Mesh Generation for Fluid Mechanics Problems,' Int. J. Numer. Meth. Engng. Vol. 47, pp. 629-662 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<629::AID-NME786>3.0.CO;2-Y
  18. Nam, Y S., Choi, H. G and Yoo, J. Y, 2002, 'AILU Preconditioning for the Finite Element Formulation of the Incompressible Navier-Stokes Equations,' Comput. Methods Appl. Mech. Engrg. Vol. 191, pp. 4323-4339 https://doi.org/10.1016/S0045-7825(02)00369-9
  19. Hesla, T. I., 1991, 'Combined Formulation of Fluid-Particle Problem' (unpublished note)
  20. Saad, Y., 1996, Iterative Methods for Sparse Linear Systems, Boston: PWS Publishing Company
  21. Kak Namkoong, 2002, 'Numerical Analyses of Dynamic Fluid-Structure Interaction About a Freely Falling Cylinder and a Bernoulli-Euler Beam,' Ph. D. Thesis, School of Mechanical and Aerospace Engineering, Seoul National University
  22. Williamson, C. H. K. and Brown, G L., 1998, 'A Series in $1/\;\sqrt{Re}$ to Represent the Strouhal-Reynolds Number Relationship of the Cylinder Wake,' J. Fluids Struct. Vol. 12, pp. 1073-1085 https://doi.org/10.1006/jfls.1998.0184
  23. Henderson, R., 1997, 'Nonlinear Dynamics and Pattern Formation in Turbulent Wake Transition,' J. Fluid Mech. Vol. 352, pp. 65-112 https://doi.org/10.1017/S0022112097007465
  24. Kiyoung Kwon and Haecheon Choi, 1996, 'Active and Passive Controls of Laminar Vortex Shedding Behind a Circular Cylinder at Low Reynolds Numbers,' Report No. TFC-MS001, Department of Mechanical Engineer-ing , Seoul National University
  25. Fey, U., Konig, M. and Eckelmann, H., 1998, 'A New Strouhal-Reynolds-Number Relationship for the Circular Cylinder in the Range $47<\sqrt{Re}<2{\times}10^5$,' Phys. Fluids Vol. 10, pp. 1547-1549 https://doi.org/10.1063/1.869675
  26. Patankar, N. A., Huang, P. Y., Ko, T. and Joseph, D. D., 2001, 'Lift-off of a Single Particle in Newtonian and Viscoelastic Fluids by Direct Numerical Simulation,' J. Fluid Mech. Vol. 438, pp. 67-100 https://doi.org/10.1017/S0022112001004104
  27. Choi, H. G. and Joseph, D. D., 2001, 'Fluidization by Lift of 300 Circular Particles in Plane Poiseuille Flow by Direct Numerical Simulation,' J. Fluid Mech. Vol. 438, pp. 101-128 https://doi.org/10.1017/S0022112001004177
  28. Park, J., Kwon, K. and Choi, H, 1998, 'Numerical Solution of Flow Past a Circular Cylinder at Reynolds Numbers up to 160,' KSME Int. J. Vol. 12, pp. 1200-1205 https://doi.org/10.1007/BF02942594
  29. Braza, M., Chassaing, P. and Ha Minh, H., 1986, 'Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder,' J. Fluid Mech. Vol. 165, pp. 79-130 https://doi.org/10.1017/S0022112086003014