• Title/Summary/Keyword: gravity field

Search Result 418, Processing Time 0.028 seconds

Origin of Dark-Energy and Accelerating Universe

  • Keum, Yong-Yeon
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • After SNIa and WMAP observations during the last decade, the discovery of the accelerated expansion of the universe is a major challenge to particle physics and cosmology. There are currently three candidates for the dark energy which results in this accelerated expansion: $\cdot$ a non-zero cosmological constant, $\cdot$ a dynamical cosmological constant (quintessence scalar field), $\cdot$ modifications of Einstein's theory of gravity. The scalar field model like quintessence is a simple model with time-dependent w, which is generally larger than -w1. Because the different w lead to a different expansion history of the universe, the geometrical measurements of cosmic expansion through observations of SNIa, CMB and baryon acoustic oscillations (BAO) can give us tight constraints on w. One of the interesting ways to study the scalar field dark-energy models is to investigate the coupling between the dark energy and the other matter fields. In fact, a number of models which realize the interaction between dark energy and dark matter, or even visible matter, have been proposed so far. Observations of the effects of these interactions will offer an unique opportunity to detect a cosmological scalar field. In this talk, after briefly reviewing the main idea of the three possible candidates for dark energy and their cosmological phenomena, we discuss the interactinng dark-energy model, paying particular attention to the interacting mechanism between dark energy with a hot dark matter (neutrinos). In this so-called mass-varying neutrino (MVN) model, we calculate explicitly the cosmic microwave background (CMB) radiation and large-scale structure (LSS) within cosmological perturbation theory. The evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today.

  • PDF

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

Quality and Yield Characteristics of Potato (Solanum tuberosum L.) Grown at Paddy Field in Spring Season

  • Im, Ju Sung;Cho, Ji Hong;Chang, Dong Chil;Jin, Yong Ik;Park, Young Eun;Chun, Chung Gi;Kim, Dong Un;Yu, Hong Seob;Lee, Jong Nam;Kim, Myung Jun
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • This study was conducted to determine the characteristics of quality and yield in potatoes grown at paddy field before rice transplantation during the spring season. Three potato cultivars ('Jowon', 'Haryeong', and 'Goun') were grown in Gangneung (asl 5 m) and Seocheon (asl 20 m). In both locations, weather condition belonged to the fourth zone (spring cropping) in potato production location's distribution of Korea. Daily mean soil temperature in both the locations was $0.2-0.6^{\circ}C$ lower than air temperature, while soil moisture was adequate level to potato growth in spite of spring drought. TR ratio was not affected by location, but by cultivar. Specific gravity, starch content, dry matter rate, and yield were significantly influenced by location and by cultivar. There was no difference in total tuber number by location, however there was a large gap in marketable tuber yield according to locations and cultivars. There were high negative relationships between yield and main qualities such as dry matter rate and starch content, while high positive correlation was observed between main qualities. It was possible to produce potato before rice transplanting at drained paddy fields located in representative two locations of potato spring cropping and their characteristics in growth and quality were similar to those generally well known in upland cultivation. Paddy field was thought to be more favorable than upland in terms of available soil moisture supply against spring drought. Further research, however, was needed to increase soil temperature and also preliminary review on proper cultivar according to location seemed to be needed for high yield.

A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES (비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Developement of Detection system of buried Underground Utilities using Magnetic Sensor (자기 센서를 이용한 지하 매설물 탐지 시스템 개발)

  • Cheon Y.S.;Lee J.Y.;Cho C.H.;Ahn K.T.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1819-1823
    • /
    • 2005
  • Incorrect information on public sites can cause serious problem. One of relevant countermeasures against this problem is to detect of buried underground utilities in real time. Although there have been several method to detect of buried underground utilities, such as investigating of gravity and elastic wave and electric field, they have not been so efficient tools. Because it is too expensive and difficult to use. In this paper, magnetic sensors which could provide an easier and more efficient method are used to detect of buried underground utilities. Also fluxgate method of self detection are used. Input signal is used $1\~10kHz$ frequency. Filtering and signal processing of output signal are used labview software. After experiment, detection system of buried underground utilities which used magnetic shows possibility of precise detecting of laying object based on theorectical analysis for electromagnetic field.

  • PDF

IMPROVEMENT OF A SEMI-IMPLICIT TWO-PHASE FLOW SOLVER ON UNSTRUCTURED MESHES (비정렬 격자계에서의 물-기체 2상 유동해석코드 수치 기법 개선)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.380-388
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.

  • PDF

A Case of Field Application of EPS Blocks and Its Performance (EPS블럭의 현장적용에 따른 하부지반의 거동 연구)

  • 장용채
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.15-28
    • /
    • 1998
  • The use of EPS application to construction field was introduced in this country very recently. Nevertheless, approximately a total of 210,000m3 of EPS application was conducted in less than four years. Main app.lication areas for the EPS method are : (1)backfill behind a bridge abutment constructed on soft clay soil, (2)embankment constructed on soft clay soil, and (3)backfill of gravity wall. Among these, about 70oA of EPS are used for (1) and (2) deb cribed above. In this study, an invesitgation was held for the application of the EPS method to backfill of a bridge abutment which was constructed on soft clay soil. Several instruments were installed around the construction site to invesitgate the behavior of the system. Then a Finite Element Analysis was conducted for comparison.

  • PDF

Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement (형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

New Approach in Magnetic Potential Field Continuation by FFT (FFT를 이용한 자력 포텐셜필드 자료의 수직방향의 연속에 대한 새로운 접근방법)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Suh, Man-Cheol;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In general, a crustal geomagnetic (or gravity) anomaly compiled at one altitude can be estimated at a different altitude by continuation using the Fourier transform (FT). However, in case of continuation with a great distance between the two elevations, or, in particular, in case of downward continuation, the estimated anomalies by the FT are likely to be mathematically unstable so that the estimated values are not realistic. To solve this problem, two independently measured magnetic field anomalies at different altitudes, such as aeromagnetic and satellite magnetic observations, are implemented to estimate values at in-between altitude for better understanding and interpreting geophysical and geological features. This ‘'dual continuation’' technique is straightforward in the FT and gives a more realistic estimate in all altitudes when we simulated with a set of prismatic bodies at different altitudes. This implies that we add up another constraint like satellite-based observations on the geopotential field modeling for the non-unique geological and geophysical problems to a conventional Fourier-type continuation technique with a single set of observations.