• Title/Summary/Keyword: graph neural network

Search Result 115, Processing Time 0.026 seconds

Predicting the Greenhouse Air Humidity Using Artificial Neural Network Model Based on Principal Components Analysis (PCA에 기반을 둔 인공신경회로망을 이용한 온실의 습도 예측)

  • Owolabi, Abdulhameed B.;Lee, Jong W;Jayasekara, Shanika N.;Lee, Hyun W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.93-99
    • /
    • 2017
  • A model was developed using Artificial Neural Networks (ANNs) based on Principal Component Analysis (PCA), to accurately predict the air humidity inside an experimental greenhouse located in Daegu (latitude $35.53^{\circ}N$, longitude $128.36^{\circ}E$, and altitude 48 m), South Korea. The weather parameters, air temperature, relative humidity, solar radiation, and carbon dioxide inside and outside the greenhouse were monitored and measured by mounted sensors. Through the PCA of the data samples, three main components were used as the input data, and the measured inside humidity was used as the output data for the ALYUDA forecaster software of the ANN model. The Nash-Sutcliff Model Efficiency Coefficient (NSE) was used to analyze the difference between the experimental and the simulated results, in order to determine the predictive power of the ANN software. The results obtained revealed the variables that affect the inside air humidity through a sensitivity analysis graph. The measured humidity agreed well with the predicted humidity, which signifies that the model has a very high accuracy and can be used for predictions based on the computed $R^2$ and NSE values for the training and validation samples.

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF

BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model (BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델)

  • Zhang, Junjun;Shin, Jongho;An, Suvin;Park, Taeyoung;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.34-36
    • /
    • 2022
  • In the existing text sentiment analysis models, the entire text is usually directly modeled as a whole, and the hierarchical relationship between text contents is less considered. However, in the practice of sentiment analysis, many texts are mixed with multiple emotions. If the semantic modeling of the whole is directly performed, it may increase the difficulty of the sentiment analysis model to judge the sentiment, making the model difficult to apply to the classification of mixed-sentiment sentences. Therefore, this paper proposes a sentiment analysis model BHGCN that considers the text hierarchy. In this model, the output of hidden states of each layer of BERT is used as a node, and a directed connection is made between the upper and lower layers to construct a graph network with a semantic hierarchy. The model not only pays attention to layer-by-layer semantics, but also pays attention to hierarchical relationships. Suitable for handling mixed sentiment classification tasks. The comparative experimental results show that the BHGCN model exhibits obvious competitive advantages.

  • PDF

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

Question Answering over Knowledge Graphs Using Bilinear Graph Neural Network (쌍 선형 그래프 신경망을 이용한 지식 그래프 기반 질문 응답)

  • Lee, Sangui;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.563-566
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.

Impulsive Noise Mitigation Scheme Based on Deep Learning (딥 러닝 기반의 임펄스 잡음 완화 기법)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.138-149
    • /
    • 2018
  • In this paper, we propose a system model which effectively mitigates impulsive noise that degrades the performance of power line communication. Recently, deep learning have shown effective performance improvement in various fields. In order to mitigate effective impulsive noise, we applied a convolution neural network which is one of deep learning algorithm to conventional system. Also, we used a successive interference cancellation scheme to mitigate impulsive noise generated from multi-users. We simulate the proposed model which can be applied to the power line communication in the Section V. The performance of the proposed system model is verified through bit error probability versus SNR graph. In addition, we compare ZF and MMSE successive interference cancellation scheme, successive interference cancellation with optimal ordering, and successive interference cancellation without optimal ordering. Then we confirm which schemes have better performance.

Learning efficiency checking system by measuring human motion detection (사람의 움직임 감지를 측정한 학습 능률 확인 시스템)

  • Kim, Sukhyun;Lee, Jinsung;Yu, Eunsang;Park, Seon-u;Kim, Eung-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.290-293
    • /
    • 2021
  • In this paper, we implement a learning efficiency verification system to inspire learning motivation and help improve concentration by detecting the situation of the user studying. To this aim, data on learning attitude and concentration are measured by extracting the movement of the user's face or body through a real-time camera. The Jetson board was used to implement the real-time embedded system, and a convolutional neural network (CNN) was implemented for image recognition. After detecting the feature part of the object using a CNN, motion detection is performed. The captured image is shown in a GUI written in PYQT5, and data is collected by sending push messages when each of the actions is obstructed. In addition, each function can be executed on the main screen made with the GUI, and functions such as a statistical graph that calculates the collected data, To do list, and white noise are performed. Through learning efficiency checking system, various functions including data collection and analysis of targets were provided to users.

  • PDF

A Narrative Literature Review on the Neural Substrates of Cognitive Reserve: Focusing on the Resting-state Functional Magnetic Resonance Imaging Studies (인지예비능의 신경적 기질에 대한 서술적 문헌고찰 연구 : 휴지기 기능적 자기공명영상 연구를 중심으로)

  • Hyeonsang Shin;Woohyun Seong;Bo-in Kwon;Yeonju Woo;Joo-Hee Kim;Dong Hyuk Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Cognitive reserve (CR) is a concept that can explain the discrepancies between the pathologic burden of the disease and clinical manifestations. It refers to the individual susceptibility to age-related brain changes and pathologies related to Alzheimer's disease, thus recognized as a factor affecting the trajectories of the disease. The purpose of this study was to explore the current states of clinical studies on neural substrates of CR in Alzheimer's disease using functional magnetic resonance imaging. We searched for clinical studies on CR using fMRI in the Pubmed, Cochrane library, RISS, KISS and ScienceON on August 14, 2023. Once the online search was finished, studies were selected manually by the inclusion criteria. Finally, we analyzed the characteristics of selected articles and reviewed the neural substrates of CR. Total thirty-four studies were included in this study. As surrogate markers of CR, not only education and occupational complexity, but also composite score and questionnaire-based method, which cover various areas of life, were mainly used. The most utilized methods in resting-state fMRI were independent component analysis, seed-based analysis, and graph theory analysis. Through the analysis, we demonstrated that neuroimaging techniques could capture the neural substrates associated with cognitive reserve. Moreover, functional connectivity of brain regions centered on prefrontal and parietal cortex and network areas such as default mode network showed a significant correlation with CR, which indicated a significant association with cognitive performance. CR may induce differential effects according to the disease status. We hope that this perspective on cognitive reserve would be helpful when conducting clinical researches on the mechanisms of traditional Korean medicine for Alzheimer's disease in the future.

Development of Artificial Intelligence Janggi Game based on Machine Learning Algorithm (기계학습 알고리즘 기반의 인공지능 장기 게임 개발)

  • Jang, Myeonggyu;Kim, Youngho;Min, Dongyeop;Park, Kihyeon;Lee, Seungsoo;Woo, Chongwoo
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.137-148
    • /
    • 2017
  • Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.

Feasibility of a deep learning-based diagnostic platform to evaluate lower urinary tract disorders in men using simple uroflowmetry

  • Seokhwan Bang;Sokhib Tukhtaev;Kwang Jin Ko;Deok Hyun Han;Minki Baek;Hwang Gyun Jeon;Baek Hwan Cho;Kyu-Sung Lee
    • Investigative and Clinical Urology
    • /
    • v.63 no.3
    • /
    • pp.301-308
    • /
    • 2022
  • Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.