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Predicting the Greenhouse Air Humidity Using Artificial Neural Network Model 

Based on Principal Components Analysis

PCA에 기반을 둔 인공신경회로망을 이용한 온실의 습도 예측
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Abstract

A model was developed using Artificial Neural Networks (ANNs) based on Principal Component Analysis (PCA), to accurately predict the air humidity 

inside an experimental greenhouse located in Daegu (latitude 35.53°N, longitude 128.36°E, and altitude 48 m), South Korea. The weather parameters, air 

temperature, relative humidity, solar radiation, and carbon dioxide inside and outside the greenhouse were monitored and measured by mounted sensors. 

Through the PCA of the data samples, three main components were used as the input data, and the measured inside humidity was used as the output data 

for the ALYUDA forecaster software of the ANN model. The Nash–Sutcliff Model Efficiency Coefficient (NSE) was used to analyze the difference 

between the experimental and the simulated results, in order to determine the predictive power of the ANN software. The results obtained revealed the 

variables that affect the inside air humidity through a sensitivity analysis graph. The measured humidity agreed well with the predicted humidity, which 

signifies that the model has a very high accuracy and can be used for predictions based on the computed R
2
 and NSE values for the training and validation 

samples.
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Ⅰ. Introduction

Greenhouses provide a controlled environment for plant 

production, with sufficient sunlight temperature and humidity. 

The greenhouse heats up because the incoming solar radiation 

from the sun warms the plants, soil, and other elements inside 

the building faster than the heat can escape from the structure 

(Okunlola, 2013). The air warmed by the heat from the hot 

interior surfaces is retained in the building by the roof and 

walls. Hence, at night, when the temperature drops as the air 

cools to the dew point, condensation occurs and water droplets 

are formed on the plant surfaces. The moist air condenses on 

the plant because the dew point temperature inside the green-

house is high. This process results in high humidity, on which 

the growth and development of all major greenhouse vege-

tables and fruits is based (Bakker, 1991). This humid environ-

ment is the result of complex mass exchanges between the 

inside air, the multiple elements in the greenhouse, and the 

outside boundaries (Fen and Chengwei, 2010). The humidity 

inside the greenhouse increases, owing to plant transpiration, 

irrigation, and insulation of the structure, which may lead to 

loss of crop quality when the plant is exposed to fungal 

diseases of varying severity, calcium deficiency, and scarcity 

of water (Fen and Chengwei, 2010). 

The principal component analysis (PCA) is a variable 

reduction technique used to reduce highly correlated variables 

into a smaller number of principal components, while retaining 

the properties of all the variables. It is also a mathematical 

analysis method used in substituting a few linear combi-

nations of the original variables (Fen and Chengwei, 2010). 

It reveals the relations between the original variables, and 

translates them into less integrative variables. The PCA re- 

orients the data so that the multiplicity of original variables 

can be summarized by relatively few components that capture 

the maximum possible information (variations) from the 
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Fig. 1 Experimental greenhouse at Daegu (latitude 35.53°N, longitude 

128.36°E)

original variables. In this case, these few components can be 

further used to predict the air humidity inside a greenhouse 

using an artificial neural network (ANN).

ANNs are relatively crude electronic models based on the 

neural structure of the brain (Owolabi et al., 2016). It is a 

non-linear mathematical model that imitates the way in which 

the human brain interprets graphical information (Carvajal 

et al., 2006). Since the mid-1980s, ANNs have been used in 

economic, energy, and environmental modeling, and for 

extending the field of statistical methods (Pahlavan et al., 

2012). The back propagation neural network has extensively 

been applied in many fields of engineering in order to perform 

some types of non-linear processing on data generated by a 

wide variety of systems. Ehret et al. (2008) described the 

ANNs as non-linear modeling techniques that find patterns 

in data sets. They have been praised as the wave of the future 

in computing, because they are self-learning mechanisms 

that do not require the traditional skills of a programmer 

(Owolabi, et al., 2016). Moreover, ANNs have achieved 

popularity as tools that can model complex systems with 

greater efficiency and less time consumption compared to other 

mathematical models, because they require no assumptions 

in the form of fitting functions. Instead, ANNs are trained 

with experimental data to find the relationships (Pahlavan et 

al., 2012). 

Ferreira et al. (2002) and Ruano et al. (2006) used ANN 

models to predict the air temperature inside greenhouses. 

Fourati and Chtourou (2007) and Seginer (1997) used neural 

networks to control the overall environmental condition of 

greenhouses. Trigo and Palutikof (1997) used an ANN for 

the daily simulations of temperature in Portugal. However, 

Fen and Chengwei (2010) are the only researchers that have 

combined the ANN with the PCA to predict the air humidity 

inside a greenhouse. They considered weather parameters 

that are different from those used for this research, and their 

work did not include a sensitivity analysis of the model for 

determining the actual variables that affect the inside air 

humidity in the greenhouse. 

The main purpose of a greenhouse is to improve the 

environmental conditions in which plants are grown (Ferreira 

et al., 2002) and, when provided with the appropriate equip-

ment, these conditions can be further improved by means of 

climate control. The greenhouse climate is mainly influenced 

by three factors: the weather both inside and outside, the 

actuators, and the crops. For efficiently controlling the green-

house climate environment, these influences must be taken 

into consideration, which is achievable only by the use of 

models. The main objective of this work was to develop a 

model that accurately predicts the inside humidity of a 

greenhouse by means of an ANN based on PCA, and use the 

model to determine the variables from the principal com-

ponents that affect the inside humidity.

Ⅱ. Materials and Methods

1. Experimental data

The experimental greenhouse is located at the Kyungpook 

National University (KNU) in Daegu (latitude 35.53°N, 

longitude 128.36°E, and altitude 48 m), South Korea. It was 

designed as a round shaped, single-span greenhouse covered 

with a double-layered polyethylene (PE) material, as shown 

in Fig. 1. The dimensions of the greenhouse are 8.4 m (W) 

×4 m (H) ×22 m (L), with a total volume and floor area of 

556.8 m
3
 and 184.8 m

2
, respectively. Strawberries were planted 

inside the greenhouse that comprises of 6 gutters built for the 

planting which was filled with coconut coir and the supply of 

water with nutrients were done through drip irrigation system. 

The night and day temperature inside the greenhouse was set 

as 10 
o
C and 25 

o
C respectively after the installation of boiler. 

The weather data were measured for the complete autumn 

season from September 1 to November 30 2016. Generally, 
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Table 1 The weather data used for the simulations

Weather parameter Unit Time interval Sensor Data recorded

Temperature °C 10 min TR-76Ui-H, TECPEL Field recorded

Relative humidity % 10 min TR-76Ui-H, TECPEL Field recorded

Solar radiation kJ h
-1

10 min CMP3, Kipp & Zonen Field recorded

Carbon dioxide ppm 10 min TR-76Ui-H, TECPEL Field recorded

Measuring period: 1 September, 2016 ~ 30 November, 2016

Location: Daegu (latitude 35.53°N, longitude 128.36°E)

Fig. 2 Flow Chart of the Model using ANN based on PCA

the relative humidity inside the greenhouse in Korea peaks 

in the winter season, but the humidity level in the autumn 

season of 2016 at the experimental site was far greater than 

in the winter season of the same year. The characteristics of 

the weather data used are presented in Table 1. The weather 

parameters, specifically, air temperature, relative humidity, 

solar radiation, and carbon dioxide, inside and outside the 

greenhouse, were monitored by mounted sensors.

2. PCA description 

PCA with a correlation matrix was used to standardize the 

collected data, thus removing the effect of dimensions and 

grades between the variables. For this purpose, the Minitab 

17 software (Eretec Inc., Australia) was employed. Because 

the main aim of the work was to develop a model to accu-

rately predict the inside humidity of the greenhouse, by 

using the PCA before building the neural network model, it 

was possible to simplify the data samples and network structure 

by reducing the neural network dimensions and eliminating 

the relation of the input factors. The variance contribution 

rate and the cumulative variance of each principal component 

were calculated to determine the number of components 

needed for use as neural network model inputs.

3. ANN description

The flow chart of the model using ANN based on PCA was 

shown in Fig. 2. The ANN software used for data analysis 

was ALYUDA Forecaster (Alyuda Research, LLC, USA), 

and three layer feed-forward models with back-propagation 

multi-layer perceptron’s (MLPs) were utilized. The neural 

network was divided into input layer data, hidden layer data, 

and output layer data (Fen and Chengwei 2010; Owolabi et 

al., 2016). The input data were the principal components 

data and the output data was the predicted humidity. The 

input data sets were divided into two sets, called the training 

set and validation set. In training the network, 83 % of the 

data was used while the remaining 17 % was used to validate 

the network. The supervised model type was used to run the 

program in order to arrive at a best network or minimum 

error, because this network is reliable and efficient in the 
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Table 2 Eigenvalue and cumulative variance contribution rate

Components Eigenvalue Variance contribution rate Cumulative variance contribution rate

PC1 3.6935 0.528 0.528

PC2 1.3447 0.192 0.720

PC3 0.8342 0.119 0.839

PC4 0.6780 0.097 0.936

PC5 0.3657 0.052 0.988

PC6 0.0777 0.011 0.999

PC7 0.0062 0.001 1.000

Total variance 7

Table 3 Loading values of principal components

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7

Outside CO2 0.0901 -0.5878 0.7369 -0.2170 0.2357 -0.0241 0.0015

Outside temp. 0.4713 -0.1469 -0.1730 0.3104 0.2012 -0.7619 0.0941

Outside R.H. 0.2265 -0.6603 -0.3080 0.2249 -0.5336 0.2865 -0.0138

Outside solar 0.4791 0.1813 0.0445 -0.3597 -0.2008 -0.0410 -0.7510

Inside CO2 -0.287 -0.3380 -0.4983 -0.6866 0.1686 -0.2343 0.0021

Inside temp. 0.4525 -0.0253 -0.2698 0.0012 0.6621 0.5288 0.0600

Inside solar 0.4488 0.2214 0.0946 -0.4527 -0.3345 0.0210 0.6505

distribution of the error. Moreover, this is the most widely 

used type of ANN.

4. Model evaluation

For evaluating the performance of measured against pre-

dicted humidity by the ANN model, the graph of the regression 

analysis and the Nash–Sutcliffe Model Efficiency Coefficient 

(NSE) were used. The two methods were employed to analyze 

the predictive power of the model, in order to compare the 

trend and level of agreement between the measured and 

predicted results. The NSE measures the quality of the fit 

between the measured and predicted data from the model, 

and it is defined in the equation by Julien et al. (2013) as




  
 




  
 




 (1)

Where   = Experimented values at time i.

 = Modelled values at time i. 

  = Mean of the experimental values. 

Ⅲ. Results and Discussions

1. PCA data interpretation

A total of 720 groups of data samples were analyzed for 

the experiment with the Minitab 17 software. Each sample 

was composed of eight variables, namely, the outside para-

meters of CO2, air temperature, relative humidity, and solar 

radiation, and the inside the greenhouse parameters of CO2, 

air temperature, relative humidity, and solar radiation. Because 

they all have different units of measurement, the 720 groups 

of data were subjected to data standardization by the Minitab 

to remove the effects of dimension and grades between the 

variables, and to give them equal weight regardless of how 

abundant each variable was (Fen and Chengwei, 2010). The 

eigenvalue and cumulative variance contribution rate, listed 

in Table 2, were obtained by arranging the cumulative variance 

contribution rate of each principal component in a sequence 

of numerical values, and taking 85.0 % as the borderline. Out 

of the seven components obtained, three principal components 

were selected to represent the vast amount of information 

contained in the original data. Thus, PC1 carried 52.8 % of 

the total information, which was more than half the total 
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(a) Based on PCA (b) Without PCA

Fig. 3 Training error graph for inside air humidity

Table 4 Performance report model

Training set with PCA Training set without PCA Validation set with PCA

Number of rows 75 75 15

Average AE 0.3462 0.2525 0.8766

Average MSE 0.2803 0.1414 1.2189

Tolerance type Absolute Absolute Absolute

Tolerance 2 2 5

Number of good forecasts 75 (100 %) 63 (84 %) 15 (100 %)

Number of bad forecasts 0 (0 %) 12 (16 %) 0 (0 %)

information of the eight variables. PC2 and PC3 carried 72.0 

% and 83.9 % of the total information, respectively. Hence, 

three principal components were considered for this work.

Taking a correlation of 0.45, the first principal component 

was correlated with four out of the seven original variables 

that were analyzed. The first principal component increased 

with increasing outside air temperature, outside solar radiation, 

inside air temperature, and inside solar radiation, as shown 

in Table 3. This suggests that these four criteria vary together. 

If one increases, then the remaining ones tend to increase, 

and vice versa. Therefore, PC1 can be viewed as a measure 

of these four variables. The second principal component 

increases with decreases in outside CO2 and outside relative 

humidity, and thus, they are both a function of PC2. The 

third principal component increases with increasing outside 

CO2 and decreasing inside CO2.

2. ANN model

For the prediction of the air humidity inside the greenhouse, 

the development of the ANN provides the best-fit model for 

all the training and validation sets used, with the topology 

3-25-1 as input, hidden, and output layers, respectively. This 

is in conformity with Fen and Chengwei (2010) and Owolabi 

et al. (2016) regarding the selection of input and output layers. 

The training error graph of the inside air humidity based 

on the PCA, as shown in Fig. 3 (a), implies that the training 

process went through 5090 iterations and the best was 

achieved at iteration number 2313, with average error (AE) 

of 0.3462 and mean square error (MSE) of 0.2803, as listed 

in Table 4. However, the training error graph of the inside air 

humidity without PCA in Fig. 3 (b), went through 5062 

iterations and the best was achieved at iteration number 

4429, with AE of 0.2525 and MSE of 0.1414, as presented in 

Table 4. It was obvious during the training process that the 

ANN based on PCA reached the training goal faster, if the 

time taken to achieve the best iteration is compared to that in 

the ANN without PCA, which is in conformity with Fen and 

Chengwei (2010). 

The batch training method was employed for this project 

to train the network as shown in Fig. 3 (a) and Fig. 3 (b) 

because it is used in training small amount of data set as 

compared to online training that uses large amount of data 
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Fig. 4 Sensitivity analysis results of inside air humidity

(a) Training samples (b) Validation samples

Fig. 5 Regression lines between the measured and predicted humidity

sets. Also, batch training is traditionally believed to be better, 

faster and accurate for small amount of data as compared 

with online training by most researchers (Wilson and Martinez, 

2003). The percentages of good and bad predictions for the 

training with PCA, training without PCA, and validation 

with PCA sets were 100 % and 0 %, 84 % and 16 %, and 

100% and 0 %, respectively, as can be seen in Table 4. To 

achieve the best-fit plot and a good model for prediction, the 

percentage of good forecasts must be greater than the per-

centage of bad forecasts in the ratio 7:3 (Owolabi et al., 

2016), and this condition was satisfied by the model. 

The result of the sensitivity analysis of the variables 

combined in the three principal components, with respect to 

the inside air humidity is shown in Fig. 4. In accurately 

predicting the air humidity inside the greenhouse, the effect 

of PC1 on the model was shown to have the highest sen-

sitivity level with 51.7 %, followed by PC2 with 26.6 %, and 

finally, PC3 with 21.7 %. This implies that the major causes 

of the increase or decrease in air humidity inside the green-

house are a function of PC1, which was composed of four 

variables, namely, inside and outside air temperature and 

solar radiation.

3. Model validation

The regression line between the measured and predicted 

humidity of the training and validating samples is shown in 

Fig. 5. It was observed from the regression line and NSE that 

the model showed satisfactory results when comparing the 

R
2 
of 0.883 and NSE of 0.866 for the training samples with 

PCA with the R
2 
of 0.911 and NSE of 0.984 for the validation 

samples with PCA. If R
2
 and NSE are close to 1, then there is 

a better match between the observations and model (Julien et 

al., 2013), and these values were very close to 1. The good 

linear fitting relationship between the measured and predicted 

values showed that the model was accurate in predicting the 

inside air humidity. This simply means that the output of the 

network can approach its target with minimal error deviation 

(Owolabi et al., 2016).

Ⅳ. Conclusions

The main objective of this work was to develop a model 

that accurately predicts the inside humidity of a greenhouse 

by means of an ANN based on PCA, and use the developed 

model to determine the variables from the principal components 

that affect the inside humidity. Three principal components 

were considered in this research, and the first component 

increased with increasing outside air temperature, outside solar 

radiation, inside air temperature, and inside solar radiation; 

the second component increased with decreasing outside 
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CO2 and outside relative humidity; and the third component 

increased with increasing outside CO2 and decreasing inside 

CO2. From the sensitivity analysis results, the major causes 

for the increase or decrease in air humidity inside the green-

house were a function of PC1, which is composed of four 

variables, namely, inside and outside air temperature and 

solar radiation. Lastly, it was observed from the regression 

line and NSE that the model showed satisfactory results 

when comparing the R
2 

of 0.883 and NSE of 0.866 for the 

training samples with PCA with the R
2 
of 0.911 and NSE of 

0.984 for the validation samples with PCA. Further, the NSE 

and R
2 

values are close to 1, which shows that is a good 

match between the observations and the model. The results 

obtained show that the measured humidity is in good agree-

ment with the predicted humidity, which means that the model 

has a very high accuracy and can be used for predicting the 

inside air humidity based on the regression analysis graph 

with the NSE values for the training and validation samples.
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