Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. 2017R1E1A1A01077487, 2020R1F1A1070952).
DOI QR Code
Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. 2017R1E1A1A01077487, 2020R1F1A1070952).