• Title/Summary/Keyword: graph function

Search Result 445, Processing Time 0.027 seconds

Development of a R function for visualizing statistical information on Google static maps (구글 지도에 통계정보를 표현하기 위한 R 함수 개발)

  • Han, Kyung-Soo;Park, Se-Jin;Ahn, Jeong-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.971-981
    • /
    • 2012
  • Google map has become one of the most recognized and comfortable means for providing statistical information of geographically referenced data. In this article, we introduce R functions to embed google map images on R interface and develop a function to represent statistical graphs such as bar graph, pie chart, and rectangle graph on a google map images.

Sediment Yield by Instantaneous Unit Sediment Graph

  • Lee, Yeong-Hwa
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed in Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

A Study on the File Allocation in Distributed Computer Systems (분산 컴퓨터 시스템에서 파일 할당에 관한 연구)

  • 홍진표;임재택
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.571-579
    • /
    • 1990
  • A dynamic relocation algorithm for non-deterministic process graph in distributed computer systems is proposed. A method is represented for determining the optimal policy for processing a process tree. A general database query request is modelled by a process tree which represent a set of subprocesses together with their precedence relationship. The process allocation model is based on operating cost which is a function fo selection of site for processing operation, data reduction function and file size. By using expected values of parameters for non-deterministic process tree, the process graph and optimal policy that yield minimum operating cost are determined. As process is relocated according to threshold value and new information of parameters after the execution of low level process for non-deterministic process graph, the assigned state that approximate to optiaml solution is obtained. The proposed algorihtm is heuristic By performing algorithm for sample problems, it is shown that the proposed algorithm is good in obtaining optimal solution.

  • PDF

Sediment Yield by Instantaneous Unit Sediment Graph

  • Yeong Hwa Lee
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1993
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed In Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH

  • Liu, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.911-926
    • /
    • 2022
  • Let u be a function on a locally finite graph G = (V, E) and Ω be a bounded subset of V. Let 𝜀 > 0, p > 2 and 0 ≤ λ < λ1(Ω) be constants, where λ1(Ω) is the first eigenvalue of the discrete Laplacian, and h : V → ℝ be a function satisfying h ≥ 0 and $h{\not\equiv}0$. We consider a perturbed Yamabe equation, say $$\{\begin{array}{lll}-{\Delta}u-{\lambda}u={\mid}u{\mid}^{p-2}u+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω and ∂Ω denote the interior and the boundary of Ω, respectively. Using variational methods, we prove that there exists some positive constant 𝜀0 > 0 such that for all 𝜀 ∈ (0, 𝜀0), the above equation has two distinct solutions. Moreover, we consider a more general nonlinear equation $$\{\begin{array}{lll}-{\Delta}u=f(u)+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ and prove similar result for certain nonlinear term f(u).

SYMMETRY OF MINIMAL GRAPHS

  • Jin, Sun Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.251-256
    • /
    • 2010
  • In this article, we consider a minimal graph in $R^3$ which is bounded by a Jordan curve and a straight line. Suppose that the boundary is symmetric with the reflection under a plane, then we will prove that the minimal graph is itself symmetric under the reflection through the same plane.

A Graph Matching Algorithm for Circuit Partitioning and Placement in Rectilinear Region and Nonplanar Surface (직선으로 둘러싸인 영역과 비평면적 표면 상에서의 회로 분할과 배치를 위한 그래프 매칭 알고리즘)

  • Park, In-Cheol;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.529-532
    • /
    • 1988
  • This paper proposes a graph matching algorithm based on simulated annealing, which assures the globally optimal solution for circuit partitioning for the placement in the rectilinear region occurring as a result of the pre-placement of some macro cells, or onto the nonplanar surface in some military or space applications. The circuit graph ($G_{C}$) denoting the circuit topology is formed by a hierarchical bottom-up clustering of cells, while another graph called region graph ($G_{R}$) represents the geometry of a planar rectilinear region or a nonplanar surface for circuit placement. Finding the optimal many-to-one vertex mapping function from $G_{C}$ to $G_{R}$, such that the total mismatch cost between two graphs is minimal, is a combinatorial optimization problem which was solved in this work for various examples using simulated annealing.

  • PDF

A Graphical Method of Checking the Adequacy of Linear Systematic Component in Generalized Linear Models (일반화선형모형에서 선형성의 타당성을 진단하는 그래프)

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • A graphical method of checking the adequacy of a generalized linear model is proposed. The graph helps to assess the assumption that the link function of mean can be expressed as a linear combination of explanatory variables in the generalized linear model. For the graph the boosting technique is applied to estimate nonparametrically the relationship between the link function of the mean and the explanatory variables, though any other nonparametric regression methods can be applied. Through simulation studies with normal and binary data, the effectiveness of the graph is demonstrated. And we list some limitations and technical details of the graph.

NOGSEC: A NOnparametric method for Genome SEquence Clustering (녹섹(NOGSEC): A NOnparametric method for Genome SEquence Clustering)

  • 이영복;김판규;조환규
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.67-75
    • /
    • 2003
  • One large topic in comparative genomics is to predict functional annotation by classifying protein sequences. Computational approaches for function prediction include protein structure prediction, sequence alignment and domain prediction or binding site prediction. This paper is on another computational approach searching for sets of homologous sequences from sequence similarity graph. Methods based on similarity graph do not need previous knowledges about sequences, but largely depend on the researcher's subjective threshold settings. In this paper, we propose a genome sequence clustering method of iterative testing and graph decomposition, and a simple method to calculate a strict threshold having biochemical meaning. Proposed method was applied to known bacterial genome sequences and the result was shown with the BAG algorithm's. Result clusters are lacking some completeness, but the confidence level is very high and the method does not need user-defined thresholds.