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HESSIAN GEOMETRY OF THE HOMOGENEOUS GRAPH
DOMAIN

YUNCHERL CHOI* AND KYEONGSOO CHANG

ABSTRACT. In this paper, we will investigate the Hessian geometry of the
homogeneous domain over the hypersurface given by a function F : R® —
R with |det DdF| = 1.

1. Introduction

Let X be an affine homogeneous hypersurface, which is a graph of a function
F : R™ — R with |det DdF| = 1. Since the affine normals of the graph X
are parallel, ¥ is, in fact, an improper affine hypersphere. If an unimodular
equiaffine Lie group A acts on X simply transitively, the torsion free and flat
affine connection D on A is induced from the Blaschke connection on ¥. The
connection gives a multiplication a % b := Dyb (a,b € a) on the Lie algebra a of
A which is compatible with the Lie bracket. From the flat condition of D, the
multiplication satisfies the following identity:

(axb)yxc—ax(bxc)=(bxa)xc—bx(axc), fora,b,cea.

This algebra A = (a,*) is called a left symmetric algebra(or LSA). The first
author showed the following in [3]:

Theorem A. The set of homogeneous hypersurfaces (A, X) as above is in one
to one correspondence with the set of the n-dimensional complete unimodular
LSA A with a nondegenerate Hessian type inner product.

Here an inner product on an LSA A is called Hessian type if it satisfies
(1) {axb, c)—{a,bxc)={bxa,c)—{(b,axc) fora,b,ce€A.

In what follows, we call an LSA with a nondegenerate Hessian type inner prod-
uct Hessian algebra. A Lie group A is unimodular if and only if jdet Adz| =1
(z € A), where Ad is the adjoint representation. For a connected Lie group A,
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this is equivalent to requiring that trada = 0 (e € a), where ad is the adjoint
representation of the Lie algebra a of A. An LSA A = (a, %) is called unimod-
ular if its associated Lie algebra given by [a,b] = a *x b — b % a is unimodular,
and an LSA A = (a,*) is called complete if trp, = O(a € a) where p is the
operator representing the right multiplication in A. It is well-known that the
completeness of A = (a, %) is equivalent to that the developing image of the Lie
group A whose Lie algebra is a is the whole R"™.

Let Q be the domain over the graph X. Suppose that a Lie subgroup G C
Aut(Q) acts simply transitively on € and it contains an unimodular equiaffine
subgroup A which acts on ¥ simply transitively. Then the following is shown
in [3].

Theorem B. The set of homogeneous domains (Q,G) over ¥ is in one to
one correspondence with the set of graph extensions § = (g,-) of a complete
unimodular Hessian algebra A = (a,%,(,)), where g = a + span{e} as a vector
space and the algebra structure is given by the followings:

(a) e-e=¢, e #0, that is, e is an idempotent.

(b) ecac A, a-e=0forallacA.

(c) a-b=axb+ (a,b)e for all a,b e A.
In this case, there is a nondegenerate Hessian metric on Q which is G-invariant,
equivalently, G is an Hessian algebra.

If we define an inner product {,) on g by

(2) (e,e) =1, (e,a) =0, (a,b) =(a,b) (a,bcA),

which is a natural extension of the inner product (,) on A, then it is easy to
check that (,)) is of Hessian type. Moreover it is equal to the inner product
defined by trp, that is, {z,y)) = trpgy where p is the right multiplication
operator on §.

Definition 1.1. Let § = (g,-) be an LSA. A nondegenerate inner product {, )
on G is called Koszul type, if there exists a Lie algebra homomorphism s : g — R
such that (z,y) = s(z - y) for 2,y € G. In this case, the LSA § will be called
simply a Koszul algebra.

We note that the graph extension is a Koszul algebra with s = trp. A
Koszul algebra § is of course a Hessian algebra because s((zy)z) = {zy, z)) for
z,y,z € G and satisfies (1) trivially.

As a simply connected pseudo-Riemannian manifold, the geometry of € is
interesting, and this is studied by some authors through the Hessian algebra
and the Koszul algebra. For some properties of Koszul algebra, we will treat
them in Section 2.

In [12], Shima studied the geometry of an affine homogeneous convex domain
Q containing no full straight line, whose counterpart is a clan in the algebra
side(see [15]). He defined elementary clan G for a direct sum span{e} + A
satisfying the followings:
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(i) ece=e, e#0.

(i) ez =1z, z-e=0forz € A.

(iii) z -y = (x,y)e for z,y € A, where (,) is a positive definite symmetric

bilinear form on A.

The domain 2 corresponding to an elementary clan is the interior of a parab-
oloid which is the graph of a polynomial F(z) = 1(z, z) on R"(22 A). He also
expressed the curvature tensor and the sectional curvature x of € using the
symmetric part of the left multiplication A, in § and proved the following:

Theorem C. Let G be a clan. Then the following conditions are equivalent:

(a) the sectional curvature k < 0.
(b) G is an elementary clan.

In [8], Mizuhara studied some algebra structures on the underlying Lie al-

gebra of an LSA G = (g, -) satisfying

(1) g =span{e} + P where ¢ is an idempotent and P ={a € g|a e =0},

(i) P=3F | P, where P,, = {a € P|e-a=a}.
He called the idempotent e a principal idempotent of type (a1,...,0q) and
induced a Hessian type inner product {,) by (z,y) = e-component of z - y for
z,y € §. With this Hessian type inner product (,), he defined an algebra
G = (g, A) with left multiplication operator A, = 3(Az + AL) where X, is the
adjoint of A, with respect to (,) and an algebra P = (P, ) constructed by
alb=anNb~- %(a, bye for a,b € P. Then he showed the following:

Theorem D. Let § = (g,-) be an LSA with a principal idempotent e of type
(a1,...,0) satisfying 1 > oy > -+ > ag > 0. Then the following two condi-

tions are equivalent:

&5 . . 1
(a) The algebra G = (g,A) is of constant sectional curvature —;.

(b) The algebra P = (P, ) is left symmetric.

As an application, he gave an equivariant affine immersion of the simply
connected Lie group G, whose Lie algebra is g, as the interior  of a nondegen-
erate, generalized paraboloid such that there exists on 2 an invariant metric
of negative constant sectional curvature.

We note that the elementary clan in [12] is a graph extension of R™(trivial
algebra) with positive definite inner product, and the LSA with principal idem-
potent of type (e, ..., ax) in [8] is also a graph extension of some unimodular
complete Hessian algebra A = (P, x) induced by a xb := a- b — (a, b)e for
a,b € P: Since P = UP,, and P,, - Py, C Pa,;(cf. [8]), A = (P, ) is unimod-
ular and complete. However, it does not clear that a graph extension of some
unimodular complete Hessian algebra is an LSA with a principal idempotent
of type (a1,...,0).

The elementary clan is the LSA with principal idempotent of type (%—) and
the geometric properties of the convex domain are generalized to the interior
of a nondegenerate, generalized paraboloid. Some of the geometric properties
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of these domains are expected to be generalized to the graph domains. In this
paper, we will translate their works to the terminology of graph extension and
generalize their results on curvature properties to the graph domains.

On the other hand, in [4], Dillen and Vrancken studied the affine hypersur-
face ¥ C R™*! whose difference tensor K = D — V is parallel with respect to
the induced affine connection D where V is the Levi-Civita connection of the
affine metric on . They showed the followings:

Theorem E. Let & be an n-dimensional affine hypersurface in R*+1,

(a) DK is totally symmetric if and only if S = M\ and [Kx,Ky] = 0 for
each X and Y, where S is the shape operator of X.

(b) If DK =0 and K # 0, then S =0 and the affine metric h is flot.

(c) If [Ky,Kz] =0 for allY and Z, then Kx 1is nilpotent for each X, that
is, (Kx)® =0 for all X.

Moreover they proved four theorems, classifying hypersurfaces with parallel
difference tensor for some cases, that is, the case when K # 0, K? = 0,
the Lorentzian case, the case when K"~ ! # 0 and the case when K" 2 #
0, K1 =0.

We note that some of the polynomials in their classifying theorems in [4],
which define the improper hyperspheres, are equal to the polynomials obtained
from the complete unimodular Hessian algebra.(cf. [3]) In authors’s thought,
all the polynomials in [4] might be obtained from the complete unimodular
Hessian algebra. Furthermore, we conjecture that the affine hypersurface with
DK =0 is homogeneous.

2. Geometry of homogeneous Hessian domain

Let (2, D, g) be an affine domain in R, where D is a torsion free affine flat
connection and g = Dd¢ denotes a Hessian metric with a potential function
¢ : Q@ — R. In this case, (,D,g) is called a Hessian domain[l4]. Let’s
assume that an affine Lie subgroup G C Aut(Q) acts simply transitively and
isometrically on the Hessian domain 2. Then the affine connection D and the
Hessian metric g are pulled back to the Lie group G. We will use the same
notation for the induced connection and the induced Hessian metric on G. We
note that the affine connection D on G gives an LSA G = (g, ) where g is the
Lie algebra of G, and the Hessian metric g on G gives a Hessian type inner
product {,) on G. Therefore from an homogeneous Hessian domain (Q2, D, g, G),
we could obtain an Hessian algebra G = (g, -, (,)).

Let V denote the Livi-Civita connection of the Hessian metric g on 2. Then
V is characterized by the Koszul formula(cf. [10]): for X,Y, Z € X(Q),

29(VxY, Z)
3) = Xg(Y,2)+Yg(Z,X) - Z9(X,Y)
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The induced connection on G from the Levi-Civita connection will be denoted
by the same notation V. Since the Hessian metric is left invariant under the
G-action, V is also left invariant, so it gives a multiplication on the Lie algebra
g = LieG which is compatible with the Lie bracket. But the algebra structure
determined by V need not be left symmetric since V is not flat in general. In
an LSA § = (g,-), we will often use A, for the left multiplication by z € §
instead of D;. The following three Propositions can be generalized from the
cases of clan in [12] to the cases of Hessian algebra.

1
Proposition 2.1. Forz €g, V, = §(>\z — \.), where )., is the adjoint linear
transformation of A, with respect to the Hessian type inner product.
Proof. Since the Hessian type inner product {, ) and z,y, z € g are left invari-

ant, z(y,2) = Dz(y,z) = 0. Similarly we have y(z,z) = z(z,y) = 0. Then
from the Koszul formula (3),

2Vy, 2)
= —(z, [y, 2]) + (v, [z, 2]) + (2, [z, ¥])
= —(z,yz — 2y) + (y,zz — zx) + (2, 2y — yx)
= (z,2y) — (y, 2z)

= (z > (xz,y)

= (A = AP)y, 2)-
Because the Hessian type inner product is nondegenerate, we have V,y =
1 !
'2'()‘90 - )‘az)y O

The difference tensor K on Q is defined by K(X,Y) = KxY = DxY -VxY
for X,Y € %(Q). Since K is also left-invariant under the G-action, it also gives
a multiplication on g, whose left multiplication by z € g is represented as the
following:

1 1

Notice that V is skew-adjoint and K, is self-adjoint with respect to the Hessian
type inner product, that is,

(4) <v:cy7 Z> = _<y7 VIZ)a <sz, Z) = <y7 Kzz> for z, Y,z €0
Proposition 2.2. For all 2,y € g, we have

(a) Ky = Kyx.
(b) Let R be the curvature tensor of V, then R(z,y) = —[K4, K,).

Proof. (a) K.y — ny = (ny - Vey) - (Dy.’L‘ - Vyx) = [m,y] - [x,y] =0.
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(b) For all z,y € g,

R(z,y)
= [Vza Vy] - V[ﬂv,y]

1 ! ]‘ / 1 !
= [E(Am - )‘a:)7 E(Ay - )‘y)] - E(A[w,y] - A[z,y])

1 2 2
= {0 A = P X1 = D A D 0 = et + TV

1 1 1 1

= —Z[)‘z’)‘y] - Z[)\”B’)‘;] - Z[A&,Ay] - Z[)‘Iz’)‘ly]

1 sy 1 ,
= _[5()‘17+)‘$)’§(>‘y+)‘y)]
= _[Krme]'
|

Let % be the sectional curvature on 2 and by abusing the notation, also be
the sectional curvature on G. Then we have

Proposition 2.3. For all z,y € g such that span{z,y} is a nondegenerate

subspace of g,

_ (Kzy, Kyz) — (Ko, Kyy)
wlay) = Q) ’

where Q(z,y) = (=, 2Ny, v) — (=, v)*.
Proof. For any z,y, z € g, by using Proposition 2.2 (b),

(R vy, z) = —{([Ke Kyly,z)

= —(K:Kyy,z) + (Ky Ky, z)
= —(Kyy, K;z)) + (Kay, Kyx).

Hence, for z,y € g such that span{z,y} is a nondegenerate subspace of g,

' (R(z, y)y, z)

Qz,y)
(Kay, Kyz) — (Koz, Kyy)
Qlz,y) '

k(z,y) =

a

Remark 2.4. (a) If the Lie group G is abelian, the condition (1) of Hessian type
inner product on the Lie algebra g is reduced to

(zy, 2y = {x,y2), forallz,y,z€g.

So we have A}, = A; for all z € g, and hence V, =0 and K, = A; forall z € g.
Therefore, in this case, the Levi-Civita connection must be flat.
(b) The multiplication o on the Lie algebra g defined by

zoy:=K,y foraz,ye€dg,
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is not compatible with the Lie algebra structure of g if it is not abelian. However
from Proposition 2.2 (a) and the equation (4), (g, o) is a commutative algebra
with an invariant inner product. If the Levi-Civita connection on g is flat,
that is, [K, K] = 0 from Proposition 2.2 (b), then (g, o) is also an associative
algebra, hence it becomes, in fact, a commutative nilpotent Frobenius algebra
by Theorem E (c) applied to our Hessian algebra.

The covariant derivative DK with respect to the affine connection is called
Hessian curvature tensor[14], which is given by DK (z,y, z) = (D, K)(y, z) for
z,y,%2 € g. From Proposition 2.2 (a), DK(z,y, ) is symmetric in y,z. The
following Proposition is the homogeneous Hessian version of Theorem E (a).

Proposition 2.5. The Hessian curvature DK 1is totally symmetric if and only
if [Kzy Kyl =0 for all z,y € g.

Proof. For any z,y,z € g,
DK (z,y,2) = (D:K)y,z)
= DmK(y,z)—K(ny,z)—K(y,sz)
= Dy;Dyz~D;Vyz—Dp,yz+Vp,yz— DyDyz2+VyDyz.

Then by using the flat and torsion free condition of D and the torsion free
condition of V, we have DK (z,y,z) — DK(y,z, z) = [Ky, Ky]z. (]

With the above Proposition 2.5 and Proposition 2.2 (b), we note that the
Hessian curvature is totally symmetric if and only if the curvature of the Levi-
Civita connection vanishes.

On a Hessian domain (€2, D, g), the metric g is called Koszul type if there
exists a closed 1-form w such that ¢ = Dw(cf. [14]). In this case, we will call
(Q,D,9) a Koszul domain. For a homogeneous Koszul domain (2, D, g, G},
if an affine Lie group G acts simply transitively preserving w on £, then the
Hessian algebra § = (g,-,(,)) is, in fact, a Koszul algebra since the closed
1-form gives a Lie algebra homomorphism s : g — R. We will denote (,);
the Koszul type inner product determined by the Lie algebra homomorphism
s. A nondegenerate inner product {,) defines an isomorphism ¢ : § — G*
by = + (e,x), where G* is the set of all linear functionals on G. Therefore,
on a Koszul algebra § = (g,-,{,)s), there exists an element e € G such that
s = ¢(e). Then s(z) = (z,e)s = s(xze) = s(ex) for any z € §. Moreover we
have the following:

Proposition 2.6. Let § =g, (,)s) be a Koszul algebra, then we have

(a) (z,ee)s ={(x,e)s for all x € g, thus e is an idempotent.

(b) Ae + AL =1+ pe, where X, is the adjoint of Ae with respect to {, ).
Proof. (a) For any x € G we have z(ee) = e(ze) + [z, e]le. Then, by using the
fact that s is a Lie algebra homomorphism,

(z,ee)s = s(z(ee)) = s(e(ze)) + s([z, ele)
= s(ze) + s([z,e]) = s(ze) = (x,€)s.



426 YUNCHERL CHOI AND KYEONGSOO CHANG

(b) For any z,y € G we have (ey)x + y(ex) = (ye)z + e(yx). Then,
(

()\e% x)s + O‘;y?x)s = )\eyax>s + <y7)‘ex>s = (ey,x}s + (y,ea:>s
s((ey)z + y(ex)) = s((ye)z + e(yz))

(e, z)s + s((yz)e) = (pey, z)s + s(y)
(Pey, T)s + (¥, T)s.

Thus {(Ae + AL) (W), 2)s = (1 + pe)(y), z)s for all z,y € G. O0

|

The idempotent e € g is called a principal idempotent of G [15]. We note
that if G has a right identity or left identity, then it must be the principal
idempotent from the uniqueness.

Corollary 2.7. Let § = (g,-,(,)s) be an n-dimensional Koszul algebra, and
let e be the principal idempotent of G. Then

(a) p, = pe where p, is the adjoint of pe with respect to ( , )s.
(b) 2tr A, =n + trpe.

3. Geometry of the graph extension

Let G = (g,) be the graph extension of a complete unimodular Hessian
algebra (a,x,(,)) where g = a +j and j = span{e}, which corresponds to the
domain over a graph of a function F' : R®™ — R. Recall that G is a Koszul algebra
with the inner product {(, )) = tr p defined in (2). For z = (a, se), y = (b,te) € g
where a,b € a and s,t € R,

Qz,y)
(@, z) (y, 9) — (=, v)*
{{a,a) + s*H(b,b) + ¢*} — {{a, b) + st}*
s%(b,b) + t*(a, a) — 2st(a, b) — (a,b)% + (a,a)(b,b).
On the other hand, from Theorem B, we have
d+sB 0 ;A +s(I—-B)
Az:(atH s)’ )\x_< 0 Csl>’

where A, is the left multiplication operator on (a,*,(,)), B denotes the re-
striction of A, on a, and H is the matrix representing the Hessian type inner
product {,) on a. Then, by calculating the matrices,

_(K.+51 La _( Kia+sa
Kx_( idH s/’ Koz = i{a,a) + &

and for y = (b,t)

[ Kyb+th _(Kb+ b+ ta
Kyy_(%(b,bwrt?)’ sz‘( La,b) +st )
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where K is the difference tensor on a. Therefore we have
(Kzy, Koy)) — (Ko, Kyy))
= (K.b+ gb-f— %a, Kb+ gb + %a) + (%(a, b) + st)?
—(Kqa+ sa, Kpb, th) — (%(a,a) + 32)(%(b, b) + t°)
= (Kab, Kob) — (Koa, Kpb)
—%{s%b, b) +t2(a, a) — 2st(a, b) — (a, 5)° + (a, a) (b, bY}

<_[Ra>}?b]bv a) - iQ('%y)

— (R(a,b)b0) - Q)

where R is the curvature tensor on a with respect to the Hessian type inner
product (,). Therefore we have the following:

Theorem 3.1. Let § = (g,-,(,))) be the graph extension of a complete uni-
modular Hessian algebra (a,*,(,)) where {(,)) = trp. Then the followings are
equivalent:

(a) The curvature R of Levi-Civita connection on a is flat.

(b) [Ka, K] =0 for all a,b € a, that is, the algebra (a,0) is a commutative
Frobenius algebra.

(c) The Hesstan curvature DK on a is totally symmetric.

(d) The sectional curvature k on G is —%.

Let’s consider another Koszul type inner product {, ))s on the graph exten-
sion § = (g, ) where the idempotent e is the corresponding principal idempo-
tent of §. Assume that s(e) = {(e,e))s = 1 for 0 # o € R. Then a = kers
because s(a) = ({a,e))s = s(ae) = 0 for all a € a and the dimension argument.
Thus we have the following: for a,b € q,

(a,6)s = s(ab) = s(a % b+ (a,bYe) = (a, b)s(e) = é(a, b).

This says that (,)s = 2(,), equivalently, s = trp. Let X, be the adjoint
of A, with respect to {(,)s. Since (y,\,2)s = (Aav,2)s = L(ey,2) =
{y, M2 = (y, Xz))s, we have N, = X, for all z € G. From this, we see that
the Levi-Civita connection and the difference tensor are not changed. Just,
Qs(z,y) = :zQ(x,9) and (K,y, Koy)s — (Ko, Kyy)s = L{(Koy, Koy)) —
(Kez, Kyy)}. Hence the curvature R of Levi-Civita connection on a is flat if
and only if the sectional curvature x, = —%. Therefore we have the following:

Theorem 3.2. Let Q2 be a homogeneous affine domain over the hypersurface
X gwen as the graph of a function F : R™ — R such that |det DAF| = 1. The
Hessian metric DAF on % is flat if and only if Q has a Koszul type Hessian
metric whose sectional curvature is constant.
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