• Title/Summary/Keyword: glutathione peroxidase (GPX)

Search Result 306, Processing Time 0.02 seconds

Embryotoxicity of Ochratoxin A in Cultured Rat Embryonic Midbrain Cells and Whole Embryos (흰쥐 배양 전배자 및 중뇌세포에서 Ochratoxin A의 독성)

  • Hong, Jin-Tae;Park, Kui-Lea;Han, Soon-Young;Park, Ki-Sook;Kim, Hyung-SIk;Oh, Se-Dong;Park, Hee-Jung;Lee, Rhee-Da;Jang, Seung-Jae
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.336-344
    • /
    • 1998
  • Effects of ochratoxin A (OTA) on embryo development were studied in cultured whole embryos from 9.5 day gestation rat for 48 h. OTA (more than $0.5{\mu}g/ml$) induced microcephaly in the cultured rat whole embryos. Protein and DNA content, and DNA synthesis were significantly inhibited by OTA. We next examined whether the microcephaly seen in cultured whole embryo partially results from inhibition of differentiation of embryonic midbrain cells. Embryonic midbrain cells were extracted from 12 day gestation rat embryos, and cultured for 96 hr. OTA ibhibited cell differentiation about 50% over control. We also tested whether OTA-induced embryotoxicity would be associated with oxidative damages. We measured the ${\gamma}$-glutamyltranspeptidase (${\gamma}$-GT) and glutathione peroxidase (GPX) activities, and glutathione (GSH) content in both cultured whole embryos and embryonic midbrain cells. OTA decreased GSH content, whereas slightly increased ${\gamma}$-GT activity, but GPX activity was not significantly changed. These results show that OTA caused the microcephaly and its effect may be partially due to the inhibition of cell differentiation of embryonic midbrain cells, but the role of oxidative damages is not clear in embryotoxicity.

  • PDF

Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

  • Son, In Suk;Lee, Jeong Soon;Lee, Ju Yeon;Kwon, Chong Suk
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.2
    • /
    • pp.82-88
    • /
    • 2014
  • Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators.

Hexane Soluble Fraction of Chungpesagan-tang Exhibits Protective Effect against Hypoxia/Reoxygenation-Induced N2a Cell Damage

  • Kim, Kyoung-A;Choi, Hwa-Jung;Kim, Bang-Geul;Park, Young-Ran;Kim, Ji-Sun;Ryu, Jae-Ha;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • Chungpesagan-tang (CST) has been traditionally used in Korea as a therapeutic for cerebral ischemia. To understand the protective mechanism of CST on hypoxia/reoxygenation insults in N2a cells, the cell viability was determined with the treatment of water solution and several solvent fractions of CST. The highest cell viability occurred when the cells were treated with the hexane soluble fraction of CST. Hypoxia/reoxygenation insults were shown to decrease the glutathione peroxidase (GPx) activity and the level of glutathione (GSH) and increase the superoxide dismutase (SOD) activity. However, treatment with hexane soluble fraction of CST ranging from 0.1 ${\mu}g$/ml to 10 ${\mu}g$/ml recovered the activities of GPx and SOD and maintained the levels of MDA and GSH at control levels. While hypoxia/reoxygenation insults induced the activation of ERK in N2a cells, treatment with the hexane soluble fraction of CST inhibited the activation of ERK in a concentration dependent manner. In this study, we were able to demonstrate that the bioactive compounds of CST can be effectively transferred into the hexane soluble fraction, and more importantly that CST exhibits protective effects against hypoxia/reoxygenation insults most likely by recovering redox enzyme activities.

Chronic Effects of Copper on Antioxidant Enzymes and Acetylcholinesterase Activities in Rock bream Oplegnathus fasciatus (구리에 노출된 돌돔(Oplegnathus fasciatus)의 항산화 효소 및 acetylcholinesterase 활성의 변화)

  • Min, EunYoung;Kang, Ju-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.874-881
    • /
    • 2014
  • A laboratory experiment was conducted to determine chronic effects of waterborne copper exposure on rock bream Oplegnathus fasciatus using a panel of enzymes. The activities of the following biochemical biomarkers were determined at different concentrations of $CuSO_4$ for 10 and 20 days: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in plasma; antioxidant enzymes including glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver and gills; and acethylcholinesterase (AChE) in brain and muscle. After exposure to two $CuSO_4$ concentrations (200 and $400{\mu}g/L$), the activities of plasma ALT in the fish showed a tendency to increase with AST and LDH, depending on $CuSO_4$ concentration. Additionally, GSH levels and SOD activities significantly increased, depending on $CuSO_4$ concentrations in liver and gills. This involved the inactivation of reactive molecules formed during oxidative stress, which could provide protection against oxidative damage induced by $CuSO_4$. However, GPx and AChE activities significantly decreased with $CuSO_4$ in liver and gills. In conclusion, these enzymes may represent convenient biomarkers for monitoring heavy metal pollution in coastal areas. Such chronic exposure studies are necessary for improving our understanding of complementary or deleterious effects of pollutants, and for developing metal toxicity biomarkers.

Fatty acid compositions, free radical scavenging activities, and antioxidative enzyme activities of high-preference and low-preference beef cuts of Hanwoo (Bos taurus coreanae) cows

  • Moon, Sang-Ho;Kim, Eun-Kyung;Jang, Se Young;Tang, Yujiao;Seong, Hye-Jin;Yun, Yeong Sik;Chung, Sanguk;Oh, Mirae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1974-1979
    • /
    • 2018
  • Objective: This study compared fatty acid compositions and antioxidant activities of high-preference cuts (loin, tenderloin, and rib) and low-preference cuts (brisket, topside, and shank) of Hanwoo (Bos taurus coreanae) cows to obtain potentially useful information for promoting the consumption of various low-preference cuts. Methods: Individual 500 g samples of fresh beef were collected from each of the six cuts from 10 Hanwoo cows (quality grade 1) and immediately freeze-dried. The dried samples were evaluated for fatty acid composition, free radical scavenging activities (hydroxyl, alkyl, and 2, 2'-diphenyl-1-picrylhydrazyl [DPPH] radical), and antioxidative enzyme activities (glutathione peroxidase [GPx], glutathione-S-transferase [GST], and superoxide dismutase [SOD]). Results: The percentages of total polyunsaturated fatty acids were significantly higher in low-preference cuts than in high-preference cuts (p<0.05). Hydroxyl, alkyl, and DPPH radical scavenging activities were significantly higher in low-preference cuts than in high-preference cuts (p<0.05). In addition, the activities of antioxidant enzymes, such as GPx, GST, and SOD, were significantly higher in low-preference cuts compared with high-preference cuts (p<0.05). Conclusion: These results may influence consumers to include more low-preference cuts in their selections based on the nutritional facts, which could help to balance the beef market in South Korea.

Effects of Dietary Zinc Supplements on the Antioxidant Indicators and the Expression of Zinc Transport Genes in Korean Native Chicks (한국 재래닭에서 아연 보충급여가 항산화 지표 및 아연 운반 유전자 발현에 미치는 영향)

  • Jeon, Dong-Gyung;Kim, Min-Jeong;Yoon, Il-Gyu;Ahn, Ho-Sung;Sohn, Sea-Hwan;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.3
    • /
    • pp.161-171
    • /
    • 2019
  • Four-week-old male Korean native chicks (KNC) were assigned to 3 groups with 6 replicates (8 birds/replicate) in each group: a basal diet (CON, 100 ppm of Zn), basal diet fortified with 50 ppm of Zn with zinc oxide (ZnO), or basal diet fortified with 50 ppm of Zn with Zn-methionine (ZnM). Immediately after a 4-week-feeding trial, 6 birds per group were used to evaluate the effects of zinc supplements on antioxidant indicators and the mRNA expression of zinc transport genes. The nitrogen components, lipid peroxidation, and total antioxidant status in blood were not influenced by Zn fortified diets. However, the ZnM group showed a significant (P<0.05) increase in uric acid levels than those in the ZnO group. In the small intestine, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and malondialdehyde (MDA) level were unaffected by zinc supplements. The activity of glutathione S-transferase (GST) was significantly (P<0.05) enhanced by Zn-methionine supplementation. In the liver, the activity of GST was significantly (P<0.05) increased by Zn-methionine supplement without affecting SOD, GPX, and MDA levels. With respect to the mRNA expression of zinc transport genes, the ZnM group displayed a strong tendency for increases in intestinal ZnT-1 (P=0.09) and ZnT-5 (P=0.06) levels, compared to those in the CON group. Moreover, the ZnM group showed a tendency (P=0.10) for up-regulation of hepatic metallothionein mRNA as compared with the CON group. In conclusion, the Zn-fortified diet with 50 ppm of Zn-methionine helped to improve GST activity and Zn transport gene expression in the small intestine or liver of KNC.

Mechanism and Effect of Corydalis ternata on the $CCl_4$-Induced$ Hepatotoxicity (사염화탄소에 의한 간손상에 미치는 현호색의 효과 및 그 기전)

  • 서인옥;정춘식;정기화
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.226-234
    • /
    • 2000
  • Protective effect of Corydalis ternata against the carbon tetrachloride-induced toxicity was investigated. Carbon tetrachloride($CCl_4$) induces hepatotoxicity due to the reactive free radical(CCl$_3$ . ) generated by cytochrome P-450 enzyme. We examined effects of hexane, chloroform, butanol and water fractions prepared from the Corydalis ternata methanol extract. Rats were treated with those for 3 days, and liver microsomes and cytosols were prepared at 24 hour after last treatment. Hepatoprotective activity of the water fraction was higher than that of other fractions. To examine mechanism of the hepatoprotective effect of Corydalis ternuta, we measured contents of malondialdehyde(MDA), cytochrome P46O(CYP), glutathione, calcium as well as the activities of NADPH-CYP reductase, glutathione S-transferase(GST), superoxide dismutase(SOD), glutathione peroxidase(GPX) and catalase. The fraction inhibited production of MDA, content of CYP and calcium in liver of water fractions - treated rats as compared with those of CCl4-treated rats. The GST activity was increased. We speculate that the O2 radical scavenging activities of the water fraction might play a key role in the mechanism opposing the progression of $CCl_4$-induced hepatotoxicity, but the activities of SOD, GPX, CAT were decreased. These results suggest that the mechanism might be mainly due to the decrease of CYP contents, act as calcium channel blocker and increase of GST activity rather than $O_2$ radical scavenging activities.

  • PDF

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells ((-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과)

  • Kim, Younghwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1293-1299
    • /
    • 2017
  • Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.

Effect of Taurine Supplementation on Lipid Peroxidation, Activities of Defense Enzymes and Membrane Stability During Rat Hepatocarcinogenesis (쥐의 간암화 과정에서 타우린의 공급이 지질과산화물 함량, 생체방어 효소 및 세포막 안정도에 미치는 영향)

  • 유정순
    • Journal of Nutrition and Health
    • /
    • v.29 no.10
    • /
    • pp.1080-1086
    • /
    • 1996
  • The purpose of this study was to determine the effects of taurine supplementation on the hepatic lipid peroxidation, activiteis of defense enzymes and membrane stability during rat hepatocarcinogenesis. Hepatocarcinogenesis was induced by Solt & Farber modification. Lipid peroxide contents of carcinogen treated group which was not supplemented with taurine were lower than those of control group. This might be that peroxide is decreased because of the activation of detoxifing enzyme. Glutathione S-transferase(GST) activites of carcinogen treated groups were significantly (p<0.05) increased compared to those of control groups. The GST activities of group supplemented with taurine before treatment of carcinogen and during the all period of experiment were only less increased. In carcinogen treated groups, glutathione peroxidase(GPx) activites of groups supplemented with taurine were higher than those of non supplemented group. By carcinogen treatemtn, glucose 6-phosphatase(G6Pase) activites, index of membrane stability were decreased, but in carcinogen treated groups supplemented with taurine, they were less decreased. These results suggest that taurine supplementation seems to inhibit lipid peroxidation, to change the activities of defense enzymes and to prevent to membrane disintegration during chemically induced hepatocarcinogenesis.

  • PDF

Anti-Oxidant Efficiency and Memchanisms of Phytochemicals from Traditional Herbal Medicine (한약재-식물성천연화학물질의 항산화 효능 및 기전)

  • Kim, Jong-Bong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.1
    • /
    • pp.103-118
    • /
    • 2008
  • Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species (ROS). Some ROS, such as superoxide and hydrogen peroxide, are normally produced in cells as by-products of biochemical reactions or as signaling molecules. When ROS-generating reactions are activated excessively, pathological quantities of ROS are released to create an imbalance between antioxidants and ROS, called as oxidative stress. Oxidative stress, which may result in cellular damage, has been linked to cardiovascular disease, diabetes, cancer, and other degenerative conditions. In humans the first line of antioxidant defence are the antioxidant enzymes, especially SOD, glutathione peroxidase (GPX), and to a lesser extent catalase, as well as the tripeptide glutathione(GSH). These enzymes will help destroy ROS(reactive oxygen species) such as hydroxyl radical, $H_2O_2$ and lipid peroxides, while GSH protects against oxidized protein. Many herbal medicines possess antioxidant properties. Herbal antioxidants may protect against these diseases by contributing to the total antioxidant defense system of the human body. Here, many herbal medicines including Ginseng, Licorice, Ligusticum Chuanxiong, Ginkgo biloba and many others was reviewed in terms of anti-oxidant efficiency related to their components.

  • PDF