DOI QR코드

DOI QR Code

Hexane Soluble Fraction of Chungpesagan-tang Exhibits Protective Effect against Hypoxia/Reoxygenation-Induced N2a Cell Damage

  • Kim, Kyoung-A (Department of Oral and MaxilloFacial Radiology, School of Dentistry, Chonbuk National University) ;
  • Choi, Hwa-Jung (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Kim, Bang-Geul (Institute of Oral Bioscience, Chonbuk National University) ;
  • Park, Young-Ran (Institute of Oral Bioscience, Chonbuk National University) ;
  • Kim, Ji-Sun (College of Pharmacy, Sookmyung Women's University) ;
  • Ryu, Jae-Ha (College of Pharmacy, Sookmyung Women's University) ;
  • Soh, Yun-Jo (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
  • Published : 2008.12.31

Abstract

Chungpesagan-tang (CST) has been traditionally used in Korea as a therapeutic for cerebral ischemia. To understand the protective mechanism of CST on hypoxia/reoxygenation insults in N2a cells, the cell viability was determined with the treatment of water solution and several solvent fractions of CST. The highest cell viability occurred when the cells were treated with the hexane soluble fraction of CST. Hypoxia/reoxygenation insults were shown to decrease the glutathione peroxidase (GPx) activity and the level of glutathione (GSH) and increase the superoxide dismutase (SOD) activity. However, treatment with hexane soluble fraction of CST ranging from 0.1 ${\mu}g$/ml to 10 ${\mu}g$/ml recovered the activities of GPx and SOD and maintained the levels of MDA and GSH at control levels. While hypoxia/reoxygenation insults induced the activation of ERK in N2a cells, treatment with the hexane soluble fraction of CST inhibited the activation of ERK in a concentration dependent manner. In this study, we were able to demonstrate that the bioactive compounds of CST can be effectively transferred into the hexane soluble fraction, and more importantly that CST exhibits protective effects against hypoxia/reoxygenation insults most likely by recovering redox enzyme activities.

Keywords

References

  1. Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Beitner-Johnson, D., Ferguson, T., Rust, R. T., Kobayashi, S., and Millhorn, D. E. (2002). Calcium-dependent activation of Pyk2 by hypoxia. Cell Signal. 14, 133-137 https://doi.org/10.1016/S0898-6568(01)00253-4
  3. Bramlett, H. M. and Dietrich, W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24, 133-150 https://doi.org/10.1097/01.WCB.0000111614.19196.04
  4. Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2-14 https://doi.org/10.1097/00004647-200101000-00002
  5. Flaskos, J., McLean, W. G., Fowler, M. J. and Hargreaves, A. J. (1998). Tricresyl phosphate inhibits the formation of axon-like processes and disrupts neurofilaments in cultured mouse N2a and rat PC12 cells. Neurosci. Lett. 242, 101–104 https://doi.org/10.1016/S0304-3940(98)00054-8
  6. Floyd, R. A. (1999). Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic. Biol. Med. 26, 1346-1355 https://doi.org/10.1016/S0891-5849(98)00293-7
  7. Gong, X. and Sucher, N. J. (1999). Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends Pharmacol. Sci. 20, 191-196 https://doi.org/10.1016/S0165-6147(98)01276-0
  8. Hong, S. G., Kang, B. J. and Cho, D. W. (2000). Inhibitory effects of Chungpesagan-tang on ischemia/reperfusioninduced inflammatory responses in vitro. KIOM Journal 6, 81-87
  9. Hong, S. G., Kang, B. J., Kim, Y. J., Kang, S. M. and Cho, D. W. (1999). Protective effects of Chungpesagan-tang against ischemia/reperfusion induced cell injury. KIOM Journal 5, 111-117
  10. Huang, Y. and McNamara, J. O. (2004). Ischemic stroke: "acidotoxicity" is a perpetrator. Cell 118, 665-666 https://doi.org/10.1016/j.cell.2004.09.004
  11. Huet, O., Petit, J. M., Ratinaud, M. H. and Julien, R. (1992). NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry 13, 532-539 https://doi.org/10.1002/cyto.990130513
  12. Ilhan, A., Koltuksuz, U., Ozen, S., Uz, E., Ciralik, H. and Akyol, O. (1999). The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. Eur. J. Cardiothorac. Surg. 16, 458-463 https://doi.org/10.1016/S1010-7940(99)00246-8
  13. Inoue, M., Watanabe, N., Morino, Y., Tanaka, Y., Amachi, T. and Sasaki, J. (1990). Inhibition of oxygen toxicity by targeting superoxide dismutase to endothelial cell surface. FEBS Lett. 269, 89-92 https://doi.org/10.1016/0014-5793(90)81126-9
  14. Kawase, M., Murakami, K., Fujimura, M., Morita-Fujimura, Y., Gasche, Y., Kondo, T., Scott, R. W. and Chan, P. H. (1999). Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30, 1962-1968 https://doi.org/10.1161/01.STR.30.9.1962
  15. Kuroda, S. and Siesjo, B. K. (1997). Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4, 199-212
  16. Lee, H. C., Kim, D. W., Jung, K. Y., Park, I. C., Park, M. J., Kim, M. S., Woo, S. H., Rhee, C. H., Yoo, H., Lee, S. H. and Hong, S. I. (2004). Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med. 13, 883-887
  17. Li, C. and Jackson, R. M. (2002). Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell. Physiol. 282, C227-241 https://doi.org/10.1152/ajpcell.00112.2001
  18. Loh, K. P., Huang, S. H., De Silva, R., Tan, B.K. and Zhu, Y. Z. (2006). Oxidative stress: apoptosis in neuronal injury. Curr. Alzheimer Res. 3, 327-337 https://doi.org/10.2174/156720506778249515
  19. Lum, H. and Roebuck, K. A. (2001). Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell. Physiol. 280, C719-741 https://doi.org/10.1152/ajpcell.2001.280.4.C719
  20. Murakami, K., Kondo, T., Epstein, C.J. and Chan, P. H. (1997). Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice. Stroke 28, 1797-1804 https://doi.org/10.1161/01.STR.28.9.1797
  21. Prasad, K., Mantha, S. V., Muir, A. D. and Westcott, N. D. (2000). Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol. Cell. Biochem. 206, 141-149 https://doi.org/10.1023/A:1007018030524
  22. Sies, H. and Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62, 1315S-1321S https://doi.org/10.1093/ajcn/62.6.1315S
  23. Sugawara, T., Fujimura, M., Noshita, N., Kim, G. W., Saito, A., Hayashi, T., Narasimhan, P., Maier, C.M. and Chan, P. H. (2004). Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 1, 17-25 https://doi.org/10.1602/neurorx.1.1.17
  24. Tabakman, R., Jiang, H., Levine, R. A., Kohen, R., and Lazarovici, P. (2004). Apoptotic characteristics of cell death and the neuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J. Neurosci. Res. 75, 499-507 https://doi.org/10.1002/jnr.20008
  25. Traystman, R. J., Kirsch, J. R. and Koehler, R. C. (1991). Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71, 1185-1195 https://doi.org/10.1152/jappl.1991.71.4.1185
  26. Ushio-Fukai, M. and Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol. Cell Biochem. 264, 85-97 https://doi.org/10.1023/B:MCBI.0000044378.09409.b5
  27. Venardos, K. M., Perkins, A., Headrick, J. and Kaye, D. M. (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14, 1539-1549 https://doi.org/10.2174/092986707780831078
  28. Wang, Z. T., Ng, T. B. and Xu, G. J. (1995). Recent advances in pharmacognosy research in China. Gen. Pharmacol. 26, 1211-1224 https://doi.org/10.1016/0306-3623(95)00012-P

Cited by

  1. Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury vol.91, pp.11, 2013, https://doi.org/10.1007/s00109-013-1070-9