References
- Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
- Beitner-Johnson, D., Ferguson, T., Rust, R. T., Kobayashi, S., and Millhorn, D. E. (2002). Calcium-dependent activation of Pyk2 by hypoxia. Cell Signal. 14, 133-137 https://doi.org/10.1016/S0898-6568(01)00253-4
- Bramlett, H. M. and Dietrich, W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24, 133-150 https://doi.org/10.1097/01.WCB.0000111614.19196.04
- Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2-14 https://doi.org/10.1097/00004647-200101000-00002
- Flaskos, J., McLean, W. G., Fowler, M. J. and Hargreaves, A. J. (1998). Tricresyl phosphate inhibits the formation of axon-like processes and disrupts neurofilaments in cultured mouse N2a and rat PC12 cells. Neurosci. Lett. 242, 101–104 https://doi.org/10.1016/S0304-3940(98)00054-8
- Floyd, R. A. (1999). Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic. Biol. Med. 26, 1346-1355 https://doi.org/10.1016/S0891-5849(98)00293-7
- Gong, X. and Sucher, N. J. (1999). Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends Pharmacol. Sci. 20, 191-196 https://doi.org/10.1016/S0165-6147(98)01276-0
- Hong, S. G., Kang, B. J. and Cho, D. W. (2000). Inhibitory effects of Chungpesagan-tang on ischemia/reperfusioninduced inflammatory responses in vitro. KIOM Journal 6, 81-87
- Hong, S. G., Kang, B. J., Kim, Y. J., Kang, S. M. and Cho, D. W. (1999). Protective effects of Chungpesagan-tang against ischemia/reperfusion induced cell injury. KIOM Journal 5, 111-117
- Huang, Y. and McNamara, J. O. (2004). Ischemic stroke: "acidotoxicity" is a perpetrator. Cell 118, 665-666 https://doi.org/10.1016/j.cell.2004.09.004
- Huet, O., Petit, J. M., Ratinaud, M. H. and Julien, R. (1992). NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry 13, 532-539 https://doi.org/10.1002/cyto.990130513
- Ilhan, A., Koltuksuz, U., Ozen, S., Uz, E., Ciralik, H. and Akyol, O. (1999). The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. Eur. J. Cardiothorac. Surg. 16, 458-463 https://doi.org/10.1016/S1010-7940(99)00246-8
- Inoue, M., Watanabe, N., Morino, Y., Tanaka, Y., Amachi, T. and Sasaki, J. (1990). Inhibition of oxygen toxicity by targeting superoxide dismutase to endothelial cell surface. FEBS Lett. 269, 89-92 https://doi.org/10.1016/0014-5793(90)81126-9
- Kawase, M., Murakami, K., Fujimura, M., Morita-Fujimura, Y., Gasche, Y., Kondo, T., Scott, R. W. and Chan, P. H. (1999). Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30, 1962-1968 https://doi.org/10.1161/01.STR.30.9.1962
- Kuroda, S. and Siesjo, B. K. (1997). Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4, 199-212
- Lee, H. C., Kim, D. W., Jung, K. Y., Park, I. C., Park, M. J., Kim, M. S., Woo, S. H., Rhee, C. H., Yoo, H., Lee, S. H. and Hong, S. I. (2004). Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med. 13, 883-887
- Li, C. and Jackson, R. M. (2002). Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell. Physiol. 282, C227-241 https://doi.org/10.1152/ajpcell.00112.2001
- Loh, K. P., Huang, S. H., De Silva, R., Tan, B.K. and Zhu, Y. Z. (2006). Oxidative stress: apoptosis in neuronal injury. Curr. Alzheimer Res. 3, 327-337 https://doi.org/10.2174/156720506778249515
- Lum, H. and Roebuck, K. A. (2001). Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell. Physiol. 280, C719-741 https://doi.org/10.1152/ajpcell.2001.280.4.C719
- Murakami, K., Kondo, T., Epstein, C.J. and Chan, P. H. (1997). Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice. Stroke 28, 1797-1804 https://doi.org/10.1161/01.STR.28.9.1797
- Prasad, K., Mantha, S. V., Muir, A. D. and Westcott, N. D. (2000). Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol. Cell. Biochem. 206, 141-149 https://doi.org/10.1023/A:1007018030524
- Sies, H. and Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62, 1315S-1321S https://doi.org/10.1093/ajcn/62.6.1315S
- Sugawara, T., Fujimura, M., Noshita, N., Kim, G. W., Saito, A., Hayashi, T., Narasimhan, P., Maier, C.M. and Chan, P. H. (2004). Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 1, 17-25 https://doi.org/10.1602/neurorx.1.1.17
- Tabakman, R., Jiang, H., Levine, R. A., Kohen, R., and Lazarovici, P. (2004). Apoptotic characteristics of cell death and the neuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J. Neurosci. Res. 75, 499-507 https://doi.org/10.1002/jnr.20008
- Traystman, R. J., Kirsch, J. R. and Koehler, R. C. (1991). Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71, 1185-1195 https://doi.org/10.1152/jappl.1991.71.4.1185
- Ushio-Fukai, M. and Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol. Cell Biochem. 264, 85-97 https://doi.org/10.1023/B:MCBI.0000044378.09409.b5
- Venardos, K. M., Perkins, A., Headrick, J. and Kaye, D. M. (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14, 1539-1549 https://doi.org/10.2174/092986707780831078
- Wang, Z. T., Ng, T. B. and Xu, G. J. (1995). Recent advances in pharmacognosy research in China. Gen. Pharmacol. 26, 1211-1224 https://doi.org/10.1016/0306-3623(95)00012-P
Cited by
- Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury vol.91, pp.11, 2013, https://doi.org/10.1007/s00109-013-1070-9