• Title/Summary/Keyword: global in time existence

Search Result 80, Processing Time 0.026 seconds

GLOBAL VORTICITY EXISTENCE OF A PERFECT INCOMPRESSIBLE FLUID IN B0∞,1(ℝ2)∩Lp(ℝ2)

  • Pak, Hee Chul;Kwon, Eun-Jung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.271-277
    • /
    • 2010
  • We prove the global (in time) vorticity existence for the 2-D Euler equations of a perfect incompressible fluid in $B^0_{{\infty},1}({\mathbb{R}}^2){\cap}L^p({\mathbb{R}}^2)$ with 1 < p < 2. Moreover, we prove that the particle trajectory map X(x, t) satisfies the following estimate: for some positive constant C $${\parallel}X^{\pm1}(\cdot,\;t)-id(\cdot){\parallel}_{B^1_{\infty,1}}{\leq}Ce^{e^{Ct}}$$, where id represents the identity map on ${\mathbb{R}}^2$.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.505-518
    • /
    • 2014
  • Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS WITH NONLINEARITY OF ARBITRARY ORDER

  • Tran, Thi Quynh Chi;Le, Thi Thuy;Nguyen, Xuan Tu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.447-463
    • /
    • 2021
  • In this paper we study the existence and long-time behavior of weak solutions to a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators with a new class of nonlinearities. First, we prove the existence and uniqueness of weak solutions by combining the compactness and monotone methods and the weak convergence techniques in Orlicz spaces. Then, we prove the existence of global attractors by using the asymptotic a priori estimates method.

MATHEMATICAL ANALYSIS OF NONLINEAR DIFFERENTIAL EQUATION ARISING IN MEMS

  • Zhang, Ruifeng;Li, Na
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.705-714
    • /
    • 2012
  • In this paper, we study nonlinear equation arising in MEMS modeling electrostatic actuation. We will prove the local and global existence of solutions of the generalized parabolic MEMS equation. We present that there exists a constant ${\lambda}^*$ such that the associated stationary problem has a solution for any ${\lambda}$ < ${\lambda}^*$ and no solution for any ${\lambda}$ > ${\lambda}^*$. We show that when ${\lambda}$ < ${\lambda}^*$ the global solution converges to its unique maximal steady-state as $t{\rightarrow}{\infty}$. We also obtain the condition for the existence of a touchdown time $T{\leq}{\infty}$ for the dynamical solution. Furthermore, there exists $p_0$ > 1, as a function of $p$, the pull-in voltage ${\lambda}^*(p)$ is strictly decreasing with respect to 1 < $p$ < $p_0$, and increasing with respect to $p$ > $p_0$.

EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS FOR CELLULAR NEURAL NETWORKS WITHOUT GLOBAL LIPSCHITZ CONDITIONS

  • Liu, Bingwan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.873-887
    • /
    • 2007
  • In this paper cellular neutral networks with time-varying delays and continuously distributed delays are considered. Without assuming the global Lipschitz conditions of activation functions, some sufficient conditions for the existence and exponential stability of the almost periodic solutions are established by using the fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results.

QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

  • Chaouai, Zakariya;El Hachimi, Abderrahmane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1003-1031
    • /
    • 2020
  • We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.

EXISTENCE AND STABILITY OF ALMOST PERIODIC SOLUTIONS FOR A CLASS OF GENERALIZED HOPFIELD NEURAL NETWORKS WITH TIME-VARYING NEUTRAL DELAYS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1051-1065
    • /
    • 2012
  • In this paper, the global stability and almost periodicity are investigated for generalized Hopfield neural networks with time-varying neutral delays. Some sufficient conditions are obtained for the existence and globally exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results. Finally, an example is given to demonstrate the effectiveness of our results.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

[ W12 ]-ESTIMATES ON THE PREY-PREDATOR SYSTEMS WITH CROSS-DIFFUSIONS AND FUNCTIONAL RESPONSES

  • Shim, Seong-A
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.211-227
    • /
    • 2008
  • As a mathematical model proposed to understand the behaviors of interacting species, cross-diffusion systems with functional responses of prey-predator type are considered. In order to obtain $W^{1_2}$-estimates of the solutions, we make use of several forms of calculus inequalities and embedding theorems. We consider the quasilinear parabolic systems with the cross-diffusion terms, and without the self-diffusion terms because of the simplicity of computations. As the main result we derive the uniform $W^{1_2}$-bound of the solutions and obtain the global existence in time.