ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

Dao Trong Quyet

Abstract

Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{2} with smooth boundary Γ. In this paper we consider the following two-dimensional (2D) g-Navier-Stokes equations:

$$
\begin{cases}\frac{\partial u}{\partial t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p & =f \text { in }(0, \infty) \times \Omega \tag{1.1}\\ \nabla \cdot(g u) & =0 \text { in }(0, \infty) \times \Omega \\ u & =0 \text { on }(0, \infty) \times \Gamma \\ u(x, 0) & =u_{0}(x), x \in \Omega\end{cases}
$$

where $u=u(x, t)=\left(u_{1}, u_{2}\right)$ is the unknown velocity vector, $p=p(x, t)$ is the unknown pressure, $\nu>0$ is the kinematic viscosity coefficient, u_{0} is the initial velocity.

The 2D g-Navier-Stokes equations arise in a natural way when we study the standard 3D problem in the thin domain $\Omega_{g}=\Omega \times(0, g)$. We refer the reader to [9] for a derivation of the 2D g-Navier-Stokes equations from the 3D Navier-Stokes equations and a relationship between them. As mentioned in [9], good properties of the 2D g-Navier-Stokes equations initiate the study of the Navier-Stokes equations on the thin three-dimensional domain Ω_{g}. In the last few years, the existence and long-time behavior of weak solutions to 2 D g-Navier-Stokes equations have been studied extensively in both autonomous and non-autonomous cases (see e.g. [1, 4, 5, 6, 7, 8, 10, 14]). However, to the

[^0]best of our knowledge, little seems to be known about strong solutions of the 2D g-Navier-Stokes equations.

In a recent work [2], the authors proved the existence and finite-time numerical approximation of strong solutions to the $2 \mathrm{D} g$-Navier-Stokes equations. In this paper, we continue studying the long-time behavior and the long-time finite dimensional approximation of the strong solutions. To do this, we assume that the function g satisfies the following assumption:
(G) $g \in W^{1, \infty}(\Omega)$ such that

$$
0<m_{0} \leq g(x) \leq M_{0} \text { for all } x=\left(x_{1}, x_{2}\right) \in \Omega, \text { and }|\nabla g|_{\infty}<m_{0} \lambda_{1}^{1 / 2}
$$

where $\lambda_{1}>0$ is the first eigenvalue of the g-Stokes operator in Ω (i.e., the operator A is defined in Section 2 below).
It is noticed that after studying the existence of solutions, as mentioned in $[12,13]$ for the Navier-Stokes equations, the long-time behavior and longtime approximation of the strong solutions are important questions because the problem of numerical computation of turbulent flows is directly connected with the computation of the solutions for large time. This is the main motivation of the present paper.

The plan of the paper is as follows. In Section 2, for convenience of the reader, we recall some auxiliary results on function spaces and inequalities for the nonlinear terms related to the g-Navier-Stokes equations. In Section 3, when the external force $f \in H_{g}$ is assumed to be time-independent, we show that the long-time behavior of strong solutions is determined by the existence of a compact global attractor in V_{g} for the continuous semigroup $S(t): V_{g} \rightarrow V_{g}$ generated by the strong solutions to the problem. To do this, we construct a bounded absorbing set in the space $D(A)$, the domain of the operator A, and using the compactness of the embedding $D(A) \hookrightarrow V_{g}$. We also prove the existence, uniqueness and exponential stability of a stationary solution when the external force is time-independent and "small" when compared with the viscosity coefficient ν. Long-time finite dimensional approximation of strong solutions is studied in the last section. The results obtained here, in particular, generalize the corresponding results for the 2D Navier-Stokes equations in [11, $12,13]$.

2. Preliminary results

2.1. Function spaces and inequalities for the nonlinear terms

Let $L^{2}(\Omega, g)=\left(L^{2}(\Omega)\right)^{2}$ and $H_{0}^{1}(\Omega, g)=\left(H_{0}^{1}(\Omega)\right)^{2}$ be endowed, respectively, with the inner products

$$
(u, v)_{g}=\int_{\Omega} u \cdot v g d x, u, v \in L^{2}(\Omega, g)
$$

and

$$
((u, v))_{g}=\int_{\Omega} \sum_{j=1}^{2} \nabla u_{j} \cdot \nabla v_{j} g d x, u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in H_{0}^{1}(\Omega, g)
$$

and norms $|u|^{2}=(u, u)_{g},\|u\|^{2}=((u, u))_{g}$. Thanks to assumption (\mathbf{G}), the norms $|\cdot|$ and $\|\cdot\|$ are equivalent to the usual ones in $\left(L^{2}(\Omega)\right)^{2}$ and in $\left(H_{0}^{1}(\Omega)\right)^{2}$.

Let

$$
\mathcal{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{2}: \nabla \cdot(g u)=0\right\}
$$

Denote by H_{g} the closure of \mathcal{V} in $L^{2}(\Omega, g)$, and by V_{g} the closure of \mathcal{V} in $H_{0}^{1}(\Omega, g)$. It follows that $V_{g} \subset H_{g} \equiv H_{g}^{\prime} \subset V_{g}^{\prime}$, where the injections are dense and continuous. We will use $\|\cdot\|_{*}$ for the norm in V_{g}^{\prime}, and $\langle\cdot, \cdot\rangle$ for duality pairing between V_{g} and V_{g}^{\prime}.

We now define the trilinear form b by

$$
b(u, v, w)=\sum_{i, j=1}^{2} \int_{\Omega} u_{i} \frac{\partial v_{j}}{\partial x_{i}} w_{j} g d x
$$

whenever the integrals make sense. It is easy to check that if $u, v, w \in V_{g}$, then

$$
b(u, v, w)=-b(u, w, v)
$$

Hence

$$
b(u, v, v)=0, \forall u, v \in V_{g}
$$

Set $A: V_{g} \rightarrow V_{g}^{\prime}$ by $\langle A u, v\rangle=((u, v))_{g}, B: V_{g} \times V_{g} \rightarrow V_{g}^{\prime}$ by $\langle B(u, v), w\rangle=$ $b(u, v, w)$, and put $B u=B(u, u)$. Denote $D(A)=\left\{u \in V_{g}: A u \in H_{g}\right\}$, then $D(A)=H^{2}(\Omega, g) \cap V_{g}$ and $A u=-P_{g} \Delta u, \forall u \in D(A)$, where P_{g} is the ortho-projector from $L^{2}(\Omega, g)$ onto H_{g}.

Lemma 2.1 ([1]). If $n=2$, then
$|b(u, v, w)| \leq\left\{\begin{array}{l}\left.c_{1}|u|^{1 / 2}\|u\|^{1 / 2}\|v\|| | w\right|^{1 / 2}\|w\|^{1 / 2}, \quad \forall u, v, w \in V_{g}, \\ c_{2}|u|^{1 / 2}\|u\|^{1 / 2}\|v\|^{1 / 2}|A v|^{1 / 2}|w|, \quad \forall u \in V_{g}, v \in D(A), w \in H_{g}, \\ c_{3}|u|^{1 / 2}|A u|^{1 / 2}\|v\||w|, \forall u \in D(A), v \in V_{g}, w \in H_{g}, \\ c_{4}|u|\|v\| \|\left. w\right|^{1 / 2}|A w|^{1 / 2}, \quad \forall u \in H_{g}, v \in V_{g}, w \in D(A),\end{array}\right.$
where $c_{i}, i=1, \ldots, 4$, are appropriate constants.
Lemma $2.2([2])$. Let $u \in L^{2}(0, T ; D(A)) \cap L^{\infty}\left(0, T ; V_{g}\right)$. Then the function $B u$ defined by

$$
(B u(t), v)_{g}=b(u(t), u(t), v), \forall v \in H_{g}, \text { a.e. } t \in[0, T],
$$

belongs to $L^{4}\left(0, T ; H_{g}\right)$, therefore also belongs to $L^{2}\left(0, T ; H_{g}\right)$.
Lemma 2.3 ([3]). Let $u \in L^{2}\left(0, T ; V_{g}\right)$. Then the function $C u$ defined by

$$
(C u(t), v)_{g}=\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)_{g}=b\left(\frac{\nabla g}{g}, u, v\right), \forall v \in V_{g}
$$

belongs to $L^{2}\left(0, T ; H_{g}\right)$, and hence also belongs to $L^{2}\left(0, T ; V_{g}^{\prime}\right)$. Moreover,

$$
|C u(t)| \leq \frac{|\nabla g|_{\infty}}{m_{0}} \cdot\|u(t)\| \text { for a.e. } t \in(0, T)
$$

and

$$
\|C u(t)\|_{*} \leq \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}} \cdot\|u(t)\| \text { for a.e. } t \in(0, T)
$$

Since

$$
-\frac{1}{g}(\nabla \cdot g \nabla) u=-\Delta u-\left(\frac{\nabla g}{g} \cdot \nabla\right) u
$$

we have
$(-\Delta u, v)_{g}=((u, v))_{g}+\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)_{g}=(A u, v)_{g}+\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)_{g}, \forall u, v \in V_{g}$.

2.2. Existence of strong solutions

We recall the result on the existence and uniqueness of a strong solution to problem (1.1) in [2] which will be used later.

Definition 2.1. Given $f \in L^{2}\left(0, T ; H_{g}\right)$ and $u_{0} \in V_{g}$, a strong solution on the $(0, T)$ of problem (1.1) is a function $u \in L^{2}(0, T ; D(A)) \cap L^{\infty}\left(0, T ; V_{g}\right)$ with $u(0)=u_{0}$, and such that
(2.1) $\frac{d}{d t}(u(t), v)_{g}+\nu((u(t), v))_{g}+\nu(C u(t), v)_{g}+b(u(t), u(t), v)=(f(t), v)_{g}$
for all $v \in V_{g}$, and for a.e. $t \in(0, T)$.
Theorem 2.1 ([2]). Suppose that $f \in L_{l o c}^{2}\left(0, \infty ; H_{g}\right)$ and $u_{0} \in V_{g}$ are given. Then for any $T>0$, there exists a unique strong solution u of problem (1.1) on $(0, T)$. Moreover, the map $u_{0} \mapsto u(t)$ is continuous on V_{g} for all $t \in[0, T]$, that is, the strong solution depends continuously on the initial data.

3. Long-time behavior of strong solutions

In this section, we assume that $f \in H_{g}$ is independent of time t. Then, by Theorem 2.1, we can define a (nonlinear) continuous semigroup $S(t): V_{g} \rightarrow V_{g}$ by

$$
S(t) u_{0}=u(t), t \geq 0, u_{0} \in V_{g}
$$

where $u(t)$ is the unique strong solution of problem (1.1) with the initial datum $u(0)=u_{0}$. We will prove that this semigroup possesses a compact connected global attractor \mathcal{A} in V_{g} (we refer the reader to [13] about the general theory of global attractors), and when the external force f is "small" enough, the attractor has a very simple form $\mathcal{A}=\left\{u^{*}\right\}$, where u^{*} is the unique strong stationary solution of problem (1.1).

3.1. Existence of a global attractor in \boldsymbol{V}_{g}

Proposition 3.1. If $f \in H_{g}$, then there exist a time $t_{0}=t_{0}\left(\left|u_{0}\right|\right)$, a $\rho_{H_{g}}$ and an $I_{V_{g}}$ such that

$$
\begin{equation*}
|u(t)| \leq \rho_{H_{g}}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{t+1}\|u(s)\|^{2} d s \leq I_{V_{g}}, \forall t \geq t_{0} \tag{3.2}
\end{equation*}
$$

Proof. In (2.1) taking $v=u(t)$ and arguing exactly as in the proof of Lemma 3.1 in [2], we have

$$
\begin{equation*}
\frac{d}{d t}|u|^{2}+2 \nu\left(\gamma_{0}-\epsilon\right)\|u\|^{2} \leq \frac{|f|^{2}}{2 \nu \epsilon \lambda_{1}} \tag{3.3}
\end{equation*}
$$

and then using the inequality $\|u\|^{2} \geq \lambda_{1}|u|^{2}$, we obtain

$$
\frac{d}{d t}|u|^{2}+2 \nu \lambda_{1}\left(\gamma_{0}-\epsilon\right)|u|^{2} \leq \frac{|f|^{2}}{2 \nu \epsilon \lambda_{1}}
$$

By Gronwall's lemma, we get

$$
|u(t)|^{2} \leq\left|u_{0}\right|^{2} e^{-2 \nu \lambda_{1}\left(\gamma_{0}-\epsilon\right) t}+\frac{|f|^{2}}{4 \nu^{2} \lambda_{1}^{2} \epsilon\left(\gamma_{0}-\epsilon\right)}
$$

and so there is a time $t_{0}=t_{0}\left(\left|u_{0}\right|\right)$ such that for all $t \geq t_{0}$,

$$
\begin{equation*}
|u(t)|^{2} \leq \frac{|f|^{2}}{2 \nu^{2} \lambda_{1}^{2} \epsilon\left(\gamma_{0}-\epsilon\right)} \leq \frac{2|f|^{2}}{\nu^{2} \lambda_{1}^{2} \gamma_{0}^{2}}=\rho_{H}^{2} \tag{3.4}
\end{equation*}
$$

The estimate (3.2) follows by integrating (3.3) from t to $t+1$ and using (3.4).
We now prove the existence of a bounded absorbing set in V_{g} for the semigroup $S(t)$.
Proposition 3.2. If $f \in H_{g}$, then there exist a time $t_{1}=t_{1}\left(t_{0}\right)$, a $\rho_{V_{g}}$ and an I_{A} such that

$$
\begin{equation*}
\|u(t)\| \leq \rho_{V_{g}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{t+1}|A u(s)|^{2} d s \leq I_{A}, \quad \forall t \geq t_{1} \tag{3.6}
\end{equation*}
$$

Proof. From (2.1), replacing v by $A u(t)$ and repeating arguments in the proof of Lemma 3.2 in [2], we get

$$
\begin{align*}
& \frac{d}{d t}\|u(t)\|^{2}+\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)|A u(t)|^{2} \tag{3.7}\\
\leq & \frac{2}{\nu}|f|^{2}+2 c_{3}^{\prime}|u(t)|^{2}\|u(t)\|^{4}+\frac{\nu|\nabla g|_{\infty}}{2 m_{0} \lambda_{1}^{1 / 2}}\|u(t)\|^{2},
\end{align*}
$$

and hence by Gronwall's lemma,

$$
\begin{aligned}
\|u(t)\|^{2} \leq & \|u(s)\|^{2} \exp \left(\int_{s}^{t}\left(2 c_{3}^{\prime}|u(\tau)|^{2} \left\lvert\,\|u(\tau)\|^{2}+\frac{\nu|\nabla g|_{\infty}}{2 m_{0} \lambda_{1}^{1 / 2}}\right.\right) d \tau\right) \\
& +\frac{2}{\nu}|f|^{2} \int_{s}^{t} \exp \left(\int_{s}^{t}\left(2 c_{3}^{\prime}|u(\tau)|^{2}\|u(\tau)\|^{2}+\frac{\nu|\nabla g|_{\infty}}{2 m_{0} \lambda_{1}^{1 / 2}}\right) d \tau\right) d r
\end{aligned}
$$

Using (3.1) and (3.2), we get

$$
\|u(t)\|^{2} \leq C_{1}\|u(s)\|^{2}+C_{2} \frac{2}{\nu}|f|^{2}
$$

Now integrating between $s=t-1$ and $s=t$, we have

$$
\|u(t)\|^{2} \leq C_{1} \int_{t-1}^{t}\|u(s)\|^{2} d s+C_{2} \frac{2}{\nu}|f|^{2}
$$

Using (3.2) once again, we obtain $\|u(t)\|^{2} \leq \rho_{V_{g}}$. Integrating (3.7) from t to $t+1$, we obtain (3.6).

We can now show the existence of a bounded absorbing set in $D(A)$ for the semigroup $S(t)$, which implies the existence of a global attractor in V_{g}.

Proposition 3.3. If $f \in H_{g}$, then there exist a time $t_{2}=t_{2}\left(t_{1}\right)$ and a ρ_{A} such that

$$
|A u(t)| \leq \rho_{A}, \quad \forall t \geq t_{2}
$$

Proof. Observe first that if $u \in D(A)$, then $B(u, u) \in H_{g}$, with

$$
|B(u, u)| \leq k|u|^{1 / 2}\left\|u|\| A u|^{1 / 2} .\right.
$$

On the other hand, since

$$
\begin{equation*}
\frac{d u}{d t}+\nu A u+\nu C u+B(u, u)=f \tag{3.8}
\end{equation*}
$$

we get

$$
\left|u_{t}\right| \leq \nu|A u|+\nu|C u|+\left.k|u|^{1 / 2}\||u|\| A u\right|^{1 / 2}+|f| .
$$

Using Lemma 2.3 and Young's inequality, we have

$$
\left|u_{t}\right| \leq \nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}| | u\left\|+k_{1}|A u|+k_{2}|u|\right\| u \|^{2}+|f| .
$$

Using (3.1) and (3.5), we get for all $t \geq t_{1}$,

$$
\left|u_{t}\right| \leq c|A u|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}} \rho_{V_{g}}+c \rho_{H_{g}} \rho_{V_{g}}^{2}+|f|
$$

Integrating from t to $t+1$, using (3.6), we have

$$
\int_{t}^{t+1}\left|u_{t}\right|^{2} d s \leq C_{t} \text { for all } t \geq t_{1}
$$

We now differentiate (3.8) with respect to t and take the inner product with u_{t} to obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left|u_{t}\right|^{2}+\nu\left\|u_{t}\right\|^{2} & \leq \nu\left|\left(C u_{t}, u_{t}\right)\right|+\left|b\left(u_{t}, u, u_{t}\right)\right| \\
& \leq \nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\left\|u_{t}\right\|^{2}+k\left\|u \left|\left\|u_{t} \mid\right\| u_{t} \|\right.\right. \\
& \leq \nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\left\|u_{t}\right\|^{2}+\epsilon \nu\left\|u_{t}\right\|^{2}+\frac{k^{2}}{4 \nu \epsilon}\|u\|^{2}\left|u_{t}\right|^{2}
\end{aligned}
$$

Hence

$$
\frac{d}{d t}\left|u_{t}\right|^{2}+2 \nu\left(\gamma_{0}-\epsilon\right)\left\|u_{t}\right\|^{2} \leq \frac{k^{2}}{2 \nu \epsilon}\|u\|^{2}\left|u_{t}\right|^{2}
$$

It follows that for t large enough,

$$
\frac{d}{d t}\left|u_{t}\right|^{2} \leq \frac{k^{2} \rho_{V_{g}}^{2}}{2 \nu \epsilon}\left|u_{t}\right|^{2}
$$

We integrate this inequality between s and $t+1$ with $t<s<t+1$ to get

$$
\left|u_{t}(t+1)\right|^{2} \leq\left|u_{t}(s)\right|^{2}+\frac{k^{2} \rho_{V_{g}}^{2}}{2 \nu \epsilon} \int_{s}^{t+1}\left|u_{t}(s)\right|^{2} d s
$$

and then again between t and $t+1$ so that

$$
\begin{equation*}
\left|u_{t}(t+1)\right|^{2} \leq\left(1+\frac{k^{2} \rho_{V_{g}}^{2}}{2 \nu \epsilon}\right) \int_{t}^{t+1}\left|u_{t}(s)\right|^{2} d s \leq C_{t}\left(1+\frac{k^{2} \rho_{V_{g}}^{2}}{2 \nu \epsilon}\right) \tag{3.9}
\end{equation*}
$$

From (3.8), we have

$$
\begin{aligned}
\nu|A u| & \leq\left|u_{t}\right|+\nu|C u|+|B(u, u)|+|f| \\
& \leq\left|u_{t}\right|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}| | u\left\|+k|u|^{1 / 2}| | u|\| A u|^{1 / 2}+|f| .\right.
\end{aligned}
$$

Using Young's inequality, we get

$$
\begin{aligned}
\frac{\nu}{2}|A u| & \leq\left|u_{t}\right|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|u\|+\frac{k^{2}}{2 \nu}|u|\|u\|^{2}+|f| \\
& \leq\left|u_{t}\right|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}} \rho_{V_{g}}+\frac{k^{2}}{2 \nu} \rho_{H_{g}} \rho_{V_{g}}^{2}+|f|
\end{aligned}
$$

and so we have that $|A u(t+1)|$ is bounded, using (3.9). This completes the proof.

Because the compactness of the embedding $D(A) \hookrightarrow V_{g}$ and the connectedness of V_{g}, from Theorem 1.1 in [13, Chapter 1] we immediately get the following result.

Theorem 3.4. The semigroup $S(t)$ generated by problem (1.1) possesses a compact connected global attractor \mathcal{A} in the space V_{g}.

3.2. Existence and exponential stability of stationary solutions

A strong stationary solution to problem (1.1) is an element $u^{*} \in D(A)$ such that

$$
\begin{equation*}
\nu\left(\left(u^{*}, v\right)\right)_{g}+\nu\left(C u^{*}, v\right)_{g}+b\left(u^{*}, u^{*}, v\right)=(f, v)_{g}, \forall v \in V_{g} . \tag{3.10}
\end{equation*}
$$

Theorem 3.5. If $f \in H_{g}$, then
(a) Problem (1.1) admits at least one strong stationary solution u^{*}. Moreover, any such strong stationary solution satisfies the estimate

$$
\begin{equation*}
\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)\left\|u^{*}\right\| \leq \frac{1}{\lambda_{1}^{1 / 2}}|f| . \tag{3.11}
\end{equation*}
$$

(b) If the following condition holds

$$
\begin{equation*}
\left[\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)\right]^{2}>\frac{c_{1}|f|}{\lambda_{1}} \tag{3.12}
\end{equation*}
$$

where c_{1} is the constant in Lemma 2.1, then the strong stationary solution of (1.1) is unique.

Proof. (i) Existence. The estimate (3.11) can be obtained taking into account that in particular any stationary solution u^{*}, if it exists, should verify

$$
\nu\left(\left(u^{*}, u^{*}\right)\right)_{g}+\nu\left(C u^{*}, u^{*}\right)_{g}=\left(f, u^{*}\right)_{g}
$$

and therefore
or

$$
\nu\left\|u^{*}\right\|^{2} \leq \frac{1}{\lambda_{1}^{1 / 2}} \left\lvert\, f\| \| u^{*}\left\|+\frac{\nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right\| u^{*}\right. \|^{2} .
$$

$$
\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right) \| u^{*}| | \leq \frac{1}{\lambda_{1}^{1 / 2}}|f| .
$$

For the existence, let v_{1}, v_{2}, \ldots, be the basis of V_{g} consisting of eigenfunctions of the operator A. For each $m \geq 1$, let us denote $V_{m}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ and we would like to define an approximate strong stationary solutions u^{m} of (1.1) by

$$
u^{m}=\sum_{i=1}^{m} \gamma_{m i} v_{i}
$$

such that

$$
\begin{equation*}
\nu\left(\left(u^{m}, v\right)\right)_{g}+\nu\left(C u^{m}, v\right)_{g}+b\left(u^{m}, u^{m}, v\right)=(f, v)_{g}, \forall v \in V_{g} . \tag{3.13}
\end{equation*}
$$

To prove the existence of u^{m}, we define operators $R_{m}: V_{m} \rightarrow V_{m}$ by

$$
\left(\left(R_{m} u, v\right)\right)=\nu\langle A u, v\rangle_{g}+\nu(C u, v)_{g}+b(u, u, v)-(f, v)_{g} \forall u, v \in V_{m}
$$

For all $u \in V_{m}$,

$$
\begin{aligned}
\left(\left(R_{m} u, u\right)\right) & =\nu\langle A u, u\rangle_{g}+\nu(C u, u)_{g}-(f, u)_{g} \\
& \geq \nu\|u\|^{2}-\frac{1}{\lambda_{1}^{1 / 2}}|f|\|u\|-\frac{\nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|u\|^{2}
\end{aligned}
$$

$$
=\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)\|u\|^{2}-\frac{1}{\lambda_{1}^{1 / 2}}|f|\|u\|
$$

Thus, if we take

$$
\beta=\frac{|f|}{\lambda_{1}^{1 / 2} \nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)},
$$

we obtain $\left(\left(R_{m} u, u\right)\right) \geq 0$ for all $u \in V_{m}$ such that $\|u\|=\beta$. Consequently, by a corollary of the Brouwer fixed point theorem, for each $m \geq 1$ there exists $u_{m} \in V_{m}$ such that $R_{m}\left(u_{m}\right)=0$, with $\left\|u_{m}\right\| \leq \beta$. Taking $v=A u^{m}$ in (3.13) we get

$$
\begin{aligned}
\nu\left|A u^{m}\right|^{2} & =\left(f, A u^{m}\right)_{g}-\nu\left(C u^{m}, A u^{m}\right)_{g}-b\left(u^{m}, u^{m}, A u^{m}\right) \\
& \leq|f|\left|A u^{m}\right|+\frac{\nu|\nabla g|_{\infty}}{m_{0}}\left|u^{m}\left\|\left.A u^{m}\left|+c_{3}\right| u^{m}\right|^{1 / 2}\right\| u^{m} \|\left|A u^{m}\right|^{3 / 2}\right. \\
& \leq \frac{1}{2 \epsilon}|f|^{2}+\epsilon\left|A u^{m}\right|^{2}+\frac{\nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\left|A u^{m}\right|^{2}+\frac{\nu|\nabla g|_{\infty}}{4 m_{0} \lambda_{1}^{1 / 2}}\left\|u^{m}\right\|^{2}+c_{3}^{\prime}\left\|u^{m}\right\|^{3}
\end{aligned}
$$

Hence using (3.11) we deduce that

$$
\begin{equation*}
\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}-\epsilon\right)\left|A u^{m}\right|^{2} \leq C\left(|f|, \nu, \lambda_{1},|\nabla g|_{\infty}\right) \tag{3.14}
\end{equation*}
$$

where $\epsilon>0$ is chosen such that $\gamma_{0}-\epsilon>0$. Hence we deduce that the sequence $\left\{u^{m}\right\}$ is bounded in $D(A)$, and consequently, by the compact injection of $D(A)$ in V_{g}, we can extract a subsequence $\left\{u^{m^{\prime}}\right\} \subset\left\{u^{m}\right\}$ that converges weakly in $D(A)$ and strongly in V_{g} to an element $u^{*} \in D(A)$. It is now standard to take limits in (3.13) and to obtain that u^{*} is a strong stationary solution of (1.1).
(ii) Uniqueness. Suppose that u^{*} and v^{*} are two strong stationary solutions of (1.1). Then

$$
\nu\left\langle A u^{*}-A v^{*}, v\right\rangle_{g}+b\left(u^{*}, u^{*}, v\right)-b\left(v^{*}, v^{*}, v\right)+\nu\left(C u^{*}-C v^{*}, v\right)_{g}=0
$$

for all $v \in V_{g}$. Taking $v=u^{*}-v^{*}$, we have

$$
\nu\left\langle A u^{*}-A v^{*}, u^{*}-v^{*}\right\rangle_{g}=b\left(u^{*}-v^{*}, v^{*}, u^{*}-v^{*}\right)-\nu\left(C u^{*}-C v^{*}, u^{*}-v^{*}\right)_{g} .
$$

Hence

$$
\nu\left\|u^{*}-v^{*}\right\|^{2} \leq c_{1} \lambda_{1}^{-1 / 2}\left\|u^{*}-v^{*}\right\|^{2}\left\|v^{*}\right\|+\frac{\nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\left\|u^{*}-v^{*}\right\|^{2}
$$

or

$$
\begin{equation*}
\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)\left\|u^{*}-v^{*}\right\|^{2} \leq c_{1} \lambda_{1}^{-1 / 2}\left\|u^{*}-v^{*}\right\|^{2}\left\|v^{*}\right\| . \tag{3.15}
\end{equation*}
$$

From (3.11) and (3.15) we have

$$
\begin{equation*}
\left[\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)\right]^{2}\left\|u^{*}-v^{*}\right\|^{2} \leq c_{1} \lambda_{1}^{-1}|f|\left\|u^{*}-v^{*}\right\|^{2} \tag{3.16}
\end{equation*}
$$

and the uniqueness follows from (3.12) and (3.16).

Theorem 3.6. If $f \in H_{g}$ and condition (3.12) is satisfied, then for any solution $u(\cdot)$ of problem (1.1) we have

$$
\left|u(t)-u^{*}\right| \rightarrow 0 \text { as } t \rightarrow \infty
$$

Proof. Denote $w(t)=u(t)-u^{*}$, one has

$$
\begin{aligned}
\frac{d}{d t}(w(t), v)_{g}+\nu((w(t), v))_{g} & +\nu(C w(t), v)_{g} \\
& +b(u(t), u(t), v)-b\left(u^{*}, u^{*}, v\right)=0, \forall v \in V_{g}
\end{aligned}
$$

Replacing v by $w(t)$ and noting that

$$
b(u(t), u(t), w(t))-b\left(u^{*}, u^{*}, w(t)\right)=b\left(w(t), u^{*}, w(t)\right)
$$

we get

$$
\frac{d}{d t}(w(t), w(t))_{g}+\nu((w(t), w(t)))_{g}+\nu(C w(t), w(t))_{g}+b\left(w(t), u^{*}, w(t)\right)=0
$$

Introducing an exponential term $e^{\lambda t}$ with a positive value λ to be fixed later on, by Lemmas 2.1 and 2.3, we have

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{\lambda t}|w(t)|^{2}\right) \\
= & e^{\lambda t}\left[\lambda|w(t)|^{2}-2 \nu\|w(t)\|^{2}-2 \nu(C w(t), w(t))_{g}-2 b\left(w(t), u^{*}, w(t)\right)\right] \\
\leq & e^{\lambda t}\left[\lambda|w(t)|^{2}-2 \nu\|w(t)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|w(t)\|^{2}+2 c_{1}\left\|u^{*}\right\||w(t)|\|w(t)\|\right] \\
\leq & e^{\lambda t}\left[\frac{\lambda}{\lambda_{1}}-2 \nu+\frac{2 \nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}+\frac{2 c_{1}}{\left.\lambda_{1}^{1 / 2}\left\|u^{*}\right\|\right]\|w(t)\|^{2}}\right. \\
\leq & e^{\lambda t}\left[\frac{\lambda}{\lambda_{1}}-2 \nu+\frac{2 \nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}+\frac{2 c_{1}|f|}{\lambda_{1} \nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}\right]\|w(t)\|^{2},
\end{aligned}
$$

where we have used the estimate (3.11) for the stationary solution u^{*}.
If condition (3.12) holds, then we can choose $\lambda>0$ such that

$$
\frac{\lambda}{\lambda_{1}}-2 \nu+\frac{2 \nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}+\frac{2 c_{1}|f|}{\lambda_{1} \nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}<0 .
$$

Hence, we deduce that $|w(t)|^{2} \leq e^{-\lambda t}|w(0)|^{2}$, and this completes the proof.

4. Long-time finite dimensional approximation

Let f_{1} and f_{2} be two continuous bounded functions from $[0, \infty)$ into H_{g}, let u_{0} and v_{0} be given in V_{g}, and let u and v denote the corresponding strong solutions to the following problems

$$
\begin{cases}\frac{d u}{d t}+\nu A u+\nu C u+B u & =f_{1}(t) \tag{4.1}\\ u(0) & =u_{0}\end{cases}
$$

and

$$
\begin{cases}\frac{d v}{d t}+\nu A v+\nu C v+B v & =f_{2}(t) \tag{4.2}\\ v(0) & =v_{0}\end{cases}
$$

Let us consider a finite-dimensional subspace E of V_{g}. We denote by $P(E)$ the orthogonal projector in H_{g} onto E, and $Q(E)=I-P(E)$. We now show that there exists $\rho(E), 0 \leq \rho(E)<1$, such that

$$
\left|((\phi, \psi))_{g}\right| \leq \rho(E)\|\phi\|\|\psi \psi\|, \quad \forall \phi \in E, \forall \psi \in V_{g}, P(E) \psi=0
$$

Indeed, if this is not true, there exist two sequences $\phi_{j} \in E, \psi_{j} \in V_{g}, j \geq 1$, $P(E) \psi_{j}=0$ such that

$$
\left\|\phi_{j}\right\|\left\|\psi_{j}\right\| \geq\left|\left(\left(\phi_{j}, \psi_{j}\right)\right)_{g}\right| \geq\left(1-\frac{1}{j}\right)\left\|\phi_{j}\right\|\left\|\psi_{j}\right\|
$$

Setting $\phi_{j}^{\prime}=\phi_{j} /\left\|\phi_{j}\right\|, \psi_{j}^{\prime}=\psi_{j} /\left\|\psi_{j}\right\|$, we have

$$
1 \geq\left|\left(\left(\phi_{j}^{\prime}, \psi_{j}^{\prime}\right)\right)_{g}\right| \geq\left(1-\frac{1}{j}\right)
$$

We can extract a subsequence, still denoted by j, such that ϕ_{j}^{\prime} converges strongly in E to $\phi \in E,\|\phi\|=1$ (since E is finite dimension), and ψ_{j}^{\prime} converges weakly in V_{g} to $\psi \in V_{g},\|\psi\| \leq 1, P(E) \psi=0$. Hence, passing to the limit, we have

$$
\left|((\phi, \psi))_{g}\right|=1,\|\phi\|=1,\|\psi\| \leq 1
$$

so that $\|\psi\|=1, \psi=k \phi \neq 0$, in contradiction with $P(E) \psi=0$.
We now associate with E the two numbers $\lambda(E), \mu(E)$,

$$
\begin{aligned}
& \lambda(E)=\inf \left\{\|\phi\|^{2}, \phi \in V_{g}, P(E) \phi=0,|\phi|=1\right\} \\
& \mu(E)=\sup \left\{\|\psi\|^{2}, \psi \in E,|\psi|=1\right\}
\end{aligned}
$$

so that
$|\phi| \leq \lambda(E)^{-1 / 2}| | \phi \|, \quad \forall \phi \in V_{g}, P(E) \phi=0$, and $\|\psi\| \leq \mu(E)^{1 / 2}|\psi|, \quad \forall \psi \in E$.
We now prove the following result.
Theorem 4.1. Assume that u and v are two strong solutions of (4.1) and (4.2), respectively. Let E be a finite-dimensional subspace of V_{g} such that

$$
\begin{equation*}
\lambda(E)>\left(\frac{c_{1} \rho_{A}}{\nu \gamma_{0}}\right)^{2} \tag{4.3}
\end{equation*}
$$

where c_{1} is the constant in Lemma 2.1, ρ_{A} is the constant in Proposition 3.3, $\gamma_{0}=1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}>0$. Then, if

$$
|P(E)(u(t)-v(t))| \rightarrow 0 \text { as } t \rightarrow \infty
$$

and

$$
\left|(I-P(E))\left(f_{1}(t)-f_{2}(t)\right)\right| \rightarrow 0 \text { as } t \rightarrow \infty,
$$

we have

$$
|u(t)-v(t)| \rightarrow 0 \text { as } t \rightarrow \infty
$$

Proof. For brevity, we will write P, Q, ρ, λ, μ instead of $P(E)$, and so forth.
We consider the two solutions u, v of (4.1) and (4.2), and set

$$
w=u-v, \quad p=P w, q=Q w, e=f_{1}-f_{2}
$$

We apply the operator Q to the difference between (4.1) and (4.2) to obtain

$$
\frac{d q}{d t}+\nu Q A w+\nu Q C w+Q B(v, w)+Q B(w, u)=Q e
$$

We then take the scalar product in H_{g} with q,

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}|q|^{2}+\nu\|q\|^{2}= & (Q e, q)_{g}-\nu((p, q))_{g}-\nu(C q, q)_{g} \\
& -\nu(C p, q)_{g}-(B(v, p), q)_{g}-(B(p, u), q)_{g}-(B(q, u), q)_{g}
\end{aligned}
$$

Using Lemmas 2.1 and 2.3, we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}|q|^{2}+\nu\|q\|^{2} \leq & \frac{1}{\lambda_{1}^{1 / 2}}|Q e|\|q\|+\nu \rho \mu^{1 / 2}|p|\|q\|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|q\|^{2} \\
& +\nu \frac{|\nabla g|_{\infty}}{m_{0}}|p|\|q\|+c_{1}(|A u|+|A v|)|p|\|q\|+c_{1}|A u\|q\|| q \|
\end{aligned}
$$

By Proposition 3.3, there exists a number $T>0$ such that

$$
|A u(t)| \leq \rho_{A},|A v(t)| \leq \rho_{A} \text { for all } t \geq T
$$

Hence if $t \geq T$, using Cauchy's inequality we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}|q|^{2}+\nu\|q\|^{2} \leq & \frac{1}{\lambda_{1}^{1 / 2}}|Q e|\|q\|+\nu \rho \mu^{1 / 2}|p|\|q\|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|q\|^{2} \\
& +\nu \frac{|\nabla g|_{\infty}}{m_{0}}\left|p\left\|\left|\|q\|+2 c_{1} \rho_{A}\right| p\right\|\right|\|q\|+c_{1} \rho_{A} \lambda(E)^{-1 / 2}\|q\|^{2} \\
\leq & \frac{\nu \epsilon}{4}\|q\|^{2}+\frac{1}{\nu \lambda_{1} \epsilon}|Q e|^{2}+\frac{\nu \epsilon}{4}\|q\|^{2}+\frac{\nu \rho^{2} \mu}{\epsilon}|p|^{2} \\
& +\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|q\|^{2}+\frac{\nu \epsilon}{4}\|q\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2} \epsilon}|p|^{2}+\frac{\nu \epsilon}{4}\|q\|^{2} \\
& +\frac{4 c_{1} \rho_{A}}{\nu \epsilon}|p|^{2}+c_{1} \rho_{A} \lambda(E)^{-1 / 2}\|q\|^{2}
\end{aligned}
$$

Then, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|q|^{2}+\left(\nu\left(\gamma_{0}-\epsilon\right)-c_{1} \rho_{A} \lambda(E)^{-1 / 2}\right)\|q\|^{2} \\
\leq & \frac{1}{\nu \lambda_{1} \epsilon}|Q e|^{2}+\left(\frac{\nu \rho^{2} \mu}{\epsilon}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2} \epsilon}+\frac{4 c_{1} \rho_{A}}{\nu \epsilon}\right)|p|^{2} .
\end{aligned}
$$

Choosing $\epsilon>0$ such that $\nu\left(\gamma_{0}-\epsilon\right)-c_{1} \rho_{A} \lambda(E)^{-1 / 2}>0$, we deduce that

$$
\frac{d}{d t}|q|^{2}+\nu_{1} \lambda|q|^{2} \leq c_{1}^{\prime}|Q e|^{2}+c_{2}^{\prime}|p|^{2}
$$

where $\nu_{1}=2\left(\nu\left(\gamma_{0}-\epsilon\right)-c_{1} \rho_{A} \lambda(E)^{-1 / 2}\right), c_{1}^{\prime}=\frac{2}{\nu \lambda_{1} \epsilon}$ and $c_{2}^{\prime}=2\left(\frac{\nu \rho^{2} \mu}{\epsilon}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2} \epsilon}+\right.$ $\left.\frac{4 c_{1} \rho_{A}}{\nu \epsilon}\right)$. Whence for $t \geq t_{0} \geq T$,

$$
\begin{equation*}
|q(t)|^{2} \leq\left|q\left(t_{0}\right)\right|^{2} e^{-\nu_{1} \lambda\left(t-t_{0}\right)}+\int_{t_{0}}^{t}\left[c_{1}^{\prime}|e(\tau)|^{2}+c_{2}^{\prime}|p(\tau)|^{2}\right] e^{-\nu_{1} \lambda(t-\tau)} d \tau \tag{4.4}
\end{equation*}
$$

Given $\delta>0$, there exists M (which we can assume $\geq T$) such that for $t \geq M$,

$$
|P(u(t)-v(t))|^{2} \leq \delta, \quad\left|(I-P)\left(f_{1}(t)-f_{2}(t)\right)\right|^{2} \leq \delta
$$

Therefore, for $t \geq t_{0}+M$, (4.4) implies

$$
\begin{aligned}
|q(t)|^{2} \leq & c(u, v) e^{-\nu_{1} \lambda\left(t-t_{0}\right)}+\delta\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \int_{t-M}^{t} e^{-\nu_{1} \lambda(t-\tau)} d \tau \\
& +\left[c_{1}^{\prime} c\left(f_{1}, f_{2}\right)+c_{2}^{\prime} c(u, v)\right] \int_{t_{0}}^{t-M} e^{-\nu_{1} \lambda(t-\tau)} d \tau
\end{aligned}
$$

where

$$
c(u, v)=\sup _{t \geq t_{0}}|u(t)-v(t)|, \quad c\left(f_{1}, f_{2}\right)=\sup _{t \geq t_{0}}\left|f_{1}(t)-f_{2}(t)\right| .
$$

As $t \rightarrow \infty$, then

$$
\limsup _{t \rightarrow \infty}|q(t)|^{2} \leq \delta\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \frac{1-e^{-\nu_{1} \lambda M}}{\nu_{1} \lambda}+\left[c_{1}^{\prime} c\left(f_{1}, f_{2}\right)+c_{2}^{\prime} c(u, v)\right] \frac{e^{-\nu_{1} \lambda M}}{\nu_{1} \lambda}
$$

Letting $\delta \rightarrow 0$ and then $M \rightarrow \infty$, we get the desired result.
Remark 4.1. Theorem 4.1 shows that if condition (4.3) is satisfied, then the behavior for $t \rightarrow+\infty$ of $u(t)$ is completely determined by that of $P(E) u(t)$.
Acknowledgements. This work is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2012.04.

References

[1] C. T. Anh and D. T. Quyet, Long-time behavior for $2 D$ non-autonomous g-NavierStokes equations, Ann. Pol. Math. 103 (2012), no. 3, 277-302.
[2] C. T. Anh, D. T. Quyet, and D. T. Tinh, Existence and finite time approximation of strong solutions to 2D g-Navier-Stokes equations, Acta Math. Vietnam. 38 (2013), no. 3, 413-428.
[3] H. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), no. 1, 85-102.
[4] J. Jiang and Y. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on \mathbb{R}^{2}, Appl. Math. Comp. 215 (2009), no. 3, 1068-1076.
[5] , Pullback attractor of $2 D$ non-autonomous g-Navier-Stokes equations on some bounded domains, App. Math. Mech. (English Ed.) 31 (2010), no. 6, 697-708.
[6] M. Kwak, H. Kwean, and J. Roh, The dimension of attractor of the $2 D \mathrm{~g}$-Navier-Stokes equations, J. Math. Anal. Appl. 315 (2006), no. 2, 436-461.
[7] H. Kwean and J. Roh, The global attractor of the 2D g-Navier-Stokes equations on some unbounded domains, Commun. Korean Math. Soc. 20 (2005), no. 4, 731-749.
[8] J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), no. 2, 452-484.
[9] \qquad , Derivation of the g-Navier-Stokes equations, J. Chungcheong Math. Soc. 19 (2006), 213-218.
[10] \qquad , Convergence of the g-Navier-Stokes equations, Taiwanese J. Math. 13 (2009), no. 1, 189-210
[11] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 2nd edition, Amsterdam: North-Holland, 1979.
[12] \qquad , Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition, Philadelphia, 1995.
[13] \qquad , Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997.
[14] D. Wu, The finite-dimensional uniform attractors for the nonautonomous g-NavierStokes equations, J. Appl. Math. 2009 (2009), Art. ID 150420, 17 pp.

Faculty of Information Technology
Le Quy Don Technical University
100 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
E-mail address: dtq100780@gmail.com

[^0]: Received February 28, 2014; Revised September 22, 2014.
 2010 Mathematics Subject Classification. 35B35, 35B41, 35D35, 35Q35.
 Key words and phrases. g-Navier-Stokes equations, global attractor, stability, stationary solution, long-time finite dimensional approximation.

