J. Korean Math. Soc. 44 (2007), No. 4, pp. 873-887

EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST
PERIODIC SOLUTIONS FOR CELLULAR NEURAL
NETWORKS WITHOUT GLOBAL LIPSCHITZ CONDITIONS

BINGWEN Liu

ABSTRACT. In this paper cellular neutral networks with time-varying de-
lays and continuously distributed delays are considered. Without assum-
ing the global Lipschitz conditions of activation functions, some sufficient
conditions for the existence and exponential stability of the almost peri-
odic solutions are established by using the fixed point theorem and dif-
ferential inequality techniques. The results of this paper are new and
complement previously known results.

1. Introduction

Consider the following models for cellular neural networks (CNNs) with
time-varying delays and continuously distributed delays

zi(t) = — cs(®)mi(t) + ) ai5 ()35 (m5(t — 735 (1))
(1.1) =t

n

+ Zbij(t) /Ooo Kij('u,)gj(:cj(t — u))du + Ii(t), 1=1,2,...,n,

J=1

which n corresponds to the number of units in a neural network, z;(t) corre-
sponds to the state vector of the ith unit at the time ¢, ¢;(t) > 0 represents
the rate with which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and external inputs at the
time ¢. a;;(t) and b;;(t) are the connection weights at the time ¢, 7;;(t) > 0
corresponds to the transmission delay of the ith unit along the axon of the jth
unit at the time ¢, and I;(t) denote the external inputs at time ¢. §; and g; are
activation functions of signal transmission.
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It is well known that the CNNs have been successfully applied to signal
and image processing, pattern recognition and optimization. Hence, they have
been the object of intensive analysis by numerous authors in recent years. In
particular, there have been extensive results on the problem of the existence
and stability of periodic and almost periodic solutions of CNNs in the literature.
We refer the reader to [2-6, 10-15] and the references cited therein. Moreover,
in the above-mentioned literature, we observe that the following assumption

(Ho) for each j € {1,2,...,n}, §;,9; : R — R are global Lipschitz with
Lipschitz constants .Z/]’ and L;, ie.,

(12) 13;(w) = g5 ()| < Ljlu — v|,|g;(u) — g;(v)| < Ljlu— v| for all u,v € R.

has been considered as fundamental for the considered existence and stability
of periodic and almost periodic solutions of CNNs. However, to the best of
our knowledge, few authors have considered the problems of almost periodic
solutions of CNNs without the assumptions (Hy). Thus, it is worth while to
continue to investigate the existence and stability of almost periodic solutions
of CNNs in this case.

The main purpose of this paper is to give the conditions for the existence
and exponential stability of the almost periodic solutions for system (1.1). By
applying fixed point theorem and differential inequality techniques, we derive
some new sufficient conditions ensuring the existence, uniqueness and exponen-
tial stability of the almost periodic solution, which are new and they comple-
ment previously known results. In particular, we do not need the assumption
(Ho). Moreover, an example is also provided to illustrate the effectiveness of
our results.

Throughout this paper, for¢,j = 1,2,...,n, it will be assumed that c;, I;, a;;,
bij,Ti; ¢ R — R are almost periodic functions, and there exist constants
T, €, 835, bij and I; such that
(13) T RO0 <6 = e,

' sup [by; (¢)] = bij, sup lai; (t)| = @, sup | L:(t)| = T,
teR teR teR

We also assume that the following conditions (Hi), (Hz), (H3) and (Hy)
hold.

(H1) For each j € {1,2,...,n}, there exist f;, h;, f;, h; € C(R, R) and con-
stants L; , L;P, M i Lf , L;-‘, M; € [0, +00) such that the following condi-
tions are satisfied. o _ _

(1) fJ(O) = O,h]‘(O) = 0,§j(u) = fJ(u)h](u), ]h](u)] < Mj for alt u €
(2) £i{(0) = 0,h;(0) = 0,9;(w) = fi(w)h;(u), |hj(u)] < M; for all u €
(3) 1£j(u) = £ ()| < L ju—|, |h;(u) = hj(v)] < L2|u— 1| for all u,v €

1
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g) (@) = £3(0)] < LI Ju— o), [hj(u) — hy(v)| < Lt|u—v| for all u,v €

(Hz) For ¢,j € {1,2,...,n}, the delay kernels K; : [0,00) — R are continu-
ous, integrable and satisfy

/oo lKij(s)[ds < kij.
]

(H3) Assume that there exist nonnegative constants L, d;; and & such that

L= max{ *,6 = max (3 & " @ELI M + bk LI MT} < 1,
j=1

1<i<n ¢, 1<

P L
diy = & (%Lf(Lgﬁ M)+b”k,]Lf(L T T M) i =12,

(Ha) For 3,5 € {1,2,...,n}, there exists a constant \g > 0 such that
>
/ lKij (S)lCAOSdS < +00.
0

For convemence, we introduce some notations. We will use z = (21, 7z, ...,

z,)T € R™ to denote a column vector, in which the symbol (T) denotes the
transpose of a vector. For matrix D = (dij)nxns DT denotes the transpose of
D, and E, denotes the identity matrix of size n. A matrix or vector D > 0
means that all entries of D are greater than or equal to zero. D > 0 can be
defined similarly. For matrices or vectors D and E, D > E (resp. D > E)
means that D — E > 0 (resp. D — E > 0).

Throughout this paper, we set

{xj(t)} = (1'1 (t)7x2(t)a s ?wn(t»T
B ={plo={pjt)} = (p1(t), w2(t), ..., on(t))7},

where ¢ is an almost periodic function on R. For Yo € B, we define induced
module ||p||p = sup ||¢(t)}], then B is a Banach space.
teR

The initial conditions associated with system (1.1) are of the form
(1.4) zi(s) = pi(s), s € (—00,0),i =1,2,...,n

where ¢;(-) denotes real-valued bounded continuous function defined on (—oo,

Definition 1 ([see 7, 9]). Let u(t) : R — R™ be continuous in ¢. u(t) is said to
be almost periodic on R if, for any ¢ > 0, the set T'(u, &) = {3 : |u(t+0)~u(t)] <
g,Vt € R} is relatively dense, i.e., for Ve > 0, it is possible to find a real number
I =1(e) > 0, for any interval with length I(¢), there exists a number § = §(¢)
in this interval such that |u(t + ) — u(t)] < ¢, for Vt € R.
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Definition 2. Let Z*(t) = (z%(t),z5(t),...,25(t))T be an almost periodic
solution of system (1.1) with initial value ¢* = (pi(t),¥3(t),...,0(t)7.
If there exist constants A > 0 and M, > 1 such that for every solution
Z(t) = (z1(t), z2(t),...,zn(t))T of system (1.1) with any initial value ¢ =
(901(25), wa(t)y .-, <Pn<t))T7
lz:(t) — 27 (1)) € Myllp — *lie ™™, ¥t >0, i=1,2,...,m,
where o — |1 = sup max |p;(s) — ¢} (s)]. Then Z*(t) is said to be
—00<5<0 1<i<n

global exponential stable.

Definition 3 ([see 7, 9]). Let z € R™ and Q(t) be a n x n continuous matrix
defined on R. The linear system

(1.5) Z'(t) = Q(t)z(t)
is said to admit an exponential dichotomy on R if there exist positive constants
k, o, projection P and the fundamental solution matrix X (t) of (1.5) satisfying
IX@OPX(s)|| < kem>(t=%) fort>s,
X ()T - P)YXY(s)| < ke®s=D)  for ¢t <s.

Lemma 1.1 ([see 7, 9)). If the linear system (1.5) admits an exponential di-
chotomy, then almost periodic system

(1.6) z'(t) = Q(t)z + g(t)
has a unigue almost periodic solution x(t), and
A7) 2@t)=['  XOPX Y (s)g(s)ds — [;" XE)(I — P)X " (s)g(s)ds.

Lemma 1.2 ([see 7, 9]). Let c;(t) be an almost periodic function on R and

4T

M(CilZTErilmi; A ci(s)ds >0, i=1,2,...,n.

Then the linear system
Z'(t) = diag(—c1(t), —c2(t), . . ., ~cn(t))z(t)
admits an exponential dichotomy on R.

Definition 4 ([see 1]). A real n X n matrix W = (w;;)nxn is said to be an M-
matrix if w;; < 0,4,7 = 1,2,...,n, i # j, and W~ > 0, where W~ denotes
the inverse of W.

Lemma 1.3 ([see 1]). Let W = (w;j)nxn withwi; <0,%,5=1,2,...,n,1# j.
Then the following statements are equivalent.

(1) W is an M -matriz.

(2) There exists a vector n = (n1,M2,--.,7M) > (0,0, ...,0) such that nW >
0.

(3) There exists a vector £ = (£1,&2,...,&)T > (0,0,...,0)T such that
W¢ > 0.
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Lemma 1.4 ([see 1]). Let A > 0 be an n x n matriz and p(A) < 1, then
(En — A)™ >0, where p(A) denotes the spectral radius of A.

The remaining part of this paper is organized as follows. In Section 2, we
shall derive new sufficient conditions for checking the existence of almost peri-
odic solutions of (1.1). In Section 3, we present some new sufficient conditions
for the uniqueness and exponential stability of the almost periodic solution of
(1.1). In Section 4, we shall give some examples and remarks to illustrate our
results obtained in the previous sections.

2. Existence of almost periodic solutions

Theorem 2.1. Let p(D) = p((dij)nxn) < 1. Suppose that the conditions (Hy),
(H2) and (H3) hold. Then, there exists a unique almost periodic solution of
system (1.1) in the region B* = {p|p € B, |l¢ — polls < £}, where

t

eolt) = { / e~ I Wi (5)ds)
t

= (/ e s awdur, (5)ds,

t t
/ e JE C2(u)du[2(8)d8, . ’/ e~ fsf cn(u)duIn(s)ds)

Proof. For Yo € B, we consider the almost periodic solution x¥(t) of nonlinear
almost periodic differential equations

T

(2.1)
zi(t) = — cs(t)z (t) + Z ai;(£)3; (105 (t — 735(¢)))
+ Zbij(t) /OOO Kij(u)gj(goj(t - u))du + I,'(t), i=1, 2,..., n.

Jj=1

Then, notice that M[c;] > 0, i = 1,2,...,n, it follows from Lemma 1.2 that
the linear system

(2.2) & (t) = —c;()z(t), i=1,2,...,n,

admits an exponential dichotomy on R. Thus, by Lemma, 1.1, we obtain that
the system (2.1) has exactly one almost periodic solution:

z?(t)
@f(t), 25 (1), ..., z4(®))T

/_ e~ Je N 015 (5)3 (105 (s — 71 (s))) + Z b1;(s) /Ooo K1;(u)

=1

Il
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- gi{p;(s — u))du + Ii(s)]ds, ...,

/ e~ o Cn(“)d“[z an;(8)3;(p;(s — Tn;(s)))
(2.3) B =

T
+D_bnj(s) /0 ) Knj(u)g;(p;(s — u))du + In(S)]dS) :

7=1
Now, we define a mapping T': B — B by setting
T(p)(t) =z*(t), Ve €B.

Since B* = {p|p € B, |l¢ — pollp < I‘STLJ}, it is easy to see that B* is a closed
convex subset of B. According to the definition of the norm of Banach space
B, we get

“(IDOHB = Sup max {/ s)e Ct(u)duds}
<i<n

(2.4)

< —}t =
o s () = s (2) =1

Therefore, for Vo € B*, we have

6L
(2.5) Fells<ll e ~wolls + 1l po lls< 75 +L =

For j =1,2,...,n, in view of (H;), we have

i)l < Lilul, [hs()] < Lful, |h(w)] < 1,
£ ()] < LfJul, |h;(w)] < L}|ul, |h;(w)| < M;,¥ u € R.

Now, we prove that the mapping T is a self-mapping from B* to B*. In fact,
for Y € B*, together with (2.5) and (2.6), we obtain

ITe — ¢oll 5
“sp s [ O a0 oo =79

#300506) [ K@y ps(o - )l
<sup max { / el ““"“[Z s (9)]1 525 (5 ~ 75 (Il (15 (s — 735 ()]

teR 1<i<n

+Z|bm (s)| / K ()1 505 (s — ) 1hs (5 (s — w))|dulds}
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IA

t n .
= [l ei(wyd =1 T LTk I M
f‘elglfggn{/_we Joeiw) ujz_;[a”LjM] + biki; L Mjlds| || B}

@7 < max {3 & @ms LI b + bk L M)} ol s
1

1<i<n 4

= < _—
dllells < =,

where § = 1max {Z 62-_1[W]-Lf]\;lj +EjkiijMj]}, it implies that T'(p)(t) € B*

and |[Tollp < 125 So the mapping T is a self-mapping from B* to B*. Hence,
by using a SImllar argument of the proof of (2.7), we can obtain
oL L
2. ™ < —jjrm™
(28) 170 — eollz < 12, IT™plls < 7o

where m is a positive integer, which implies that the mapping T™ is a self-
mapping from B* to B*,

Next, we prove that there exists a positive integer N such that the mapping
T¥ is a contraction mapping of the B*. In fact, in view of (2.5), (2.6) and the
condition (Hy), for V¢, € B*, we have

IT(6(t)) — T(3(t))]
= (I(T(e®) = TWOMl, -, (T(B() = T@(E)al)T

n

([ e R SCHCIACHEE MO AERRNEN)
+Zbu ) [ Ko w505 ) = 05(0s — )l
[ e %W“Za )35 (035 — Tns (5)) = 33455 = g ()
+ Z bes(6) [ g ) 055 = w0) = 0505 — )]

< ([— e IS cl(“)du Z lai;(s |f] ¢;(s — 115(s )))Bj<¢j(s —715(8)))

— fi(#;(s —le(S)))hj(%(S = 115())) + 1F(65(s — 11;(5)))
Ry (95 (s — m15(9))) = F3(W5(s = 715(8)))h; (5 (s — 715(5)))])

Z b;(s)] /0 K15 (w)[(1£5(5 (s — w)hj( (s —w))
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= Fi(#i(s — u))h; (¥ (s — w))| + | £5(d5(s — u))h;(¥(s — u))
= [i(%;(s — u)h; (;(s — u))|)dulds, ...,

~ f5(i(s = Tng (A (W5 (s = Tz (I + 153 (5(s = 5 (5)))
h (1/11 (8 = 7nj(5))) = f3(W5(s = 73 (8)))h; (W5(s — T3 (5)))])

+ Z [bnj (5)] / [ Knj (w)](1£5(85(s — w))h;(5(s — u)) = f5(65(s — w))

(% (s = w)| + [£5(bs(s — w)h;(;(s —w))
= £i(%5(s = u)h;(¥;(s — w))|)dulds)”

t
<(f et 01<">d“[2a13 (L] sup o (0) + 1)

Zblaklsz(L sup [¢5(8)| + My)) sup |6, (t) ¥ (B))ds, ...,

7j=1
t
/ e~ L2 en (3 g (1 sup 6 ()] + ;)
oo p
+ Y bnjkn; LT (L2 sup |5 (t)| + M;)) sup |5 (t) — ;(t)[]ds)T
j=1 teR tER
<(§n: & @nLi(Lh L+1\7I)+bl ki LI(L "L+M))
s < 1 7 5 VA ¥ i1-§ J
n L -
sup |5 (t) = % (O)], .., Y & @ep L] (L} 3= + )
ij=1
L
+ Bpjkn Lf(Lh—6+M ) sup |¢; (t) — 5 ()T
teER

< D(sup [$1(t) = 91 (8)]; - - - ,sup |6n(t) — ¥u ()7,
teR teR
which, together with 7™ is a self-mapping from B* to B*, implies that
IT™(¢(t)) — T™(%(t))]
< D(fgg (@™ H(()-T™ (b)),
@9 sup (T B(8) - T ()T

tER

< - < D™(sup61(t) — $a(t)], -, sup|n(t) = Ya(t))T,
teR teR
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where m is a positive integer. Since p(D) < 1, we obtain
lim D™ =0,
m—>—+00

which implies that there exist a positive integer N and a positive constant
r < 1 such that
(2.10) DY = (hij)uxn, and Y hi; <ri=1,2,...,n,
In view of (2.9) and (2.10), we have
TV (¢(1) =TV ((1))):] < sup (TN (6(t)) — TN (%(t)))sl

tER
< ; hyj sup | (t) — w;(t)
< (sup max |6;(t) — v (1)) ]2;: hi;

< rljé@) =¥l s,
forallte R, i=1,2,...,n. It follows that

T (@(0) = T @E)l15 =sup max |(T(@(0) = T WD)

<rlio(t) — () 5.

This implies that the mapping TV : B* — B* is a contraction mapping.
Therefore the mapping T possesses a unique fixed point Z* € B*, T'Z* = Z*.
By (2.1), Z* satisfies (1.1). So Z* is an almost periodic solution of system (1.1)
in B*. The proof of Theorem 2.1 is now complete. O

(2.11)

3. Uniqueness and exponential stability of the almost periodic
solution

In this section, we establish some results for the uniqueness and exponential
stability of the almost periodic solution of (1.1).

Theorem 3.1. Let (Hy) hold. Suppose that all the conditions of Theorem 2.1
are satisfied. Then system (1.1) has ezactly one almost periodic solution Z*(t).
Moreover, Z*(t) is globally exponentially stable.

Proof. From Theorem 2.1, system (1.1) has at least one almost periodic solution
Z*(t) = {x;(t)} with initial value ¢* = {¢}(t)}, and Z*(t) € B*. Let Z(t) =
{z;(t)} be an arbitrary solution of system (1.1) with initial value ¢ = {p;(t)},
let y(t) = {y; ()} = {;(t) - 25 (1)} = Z(t) — Z*(¢). Then

(3.1) vi(t) = — ci(t)ya(t)
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+ 3 @ (8)(F (5t — 75 (8)) + €}t — 5 (D)) — G5 (=5t — i (£))))

j=1
+Ybs(o) [ " Ky ) a5 (05t — ) + 3t =) = g5 (@3 (¢ ~ )
j=1

where § = 1,2,...,n.

Since p(D) < 1, it follows from Lemma 1.4 that E,, — D is an M-matrix.
In view of Lemma 1.3, there exists a constant vector & = (€1, Eay... )T >
{0,0,...,0)T such that

(E, ~ D) > (0,0,...,0)T.
Then,

o n—v_~~ I . no L _
(3@—ﬂ&+§:wﬂgwﬁ+ij3Lﬁ&+§:%hﬂ4@@+5j3Lﬁ&<0
i=1

=1

for i =1,2,...,n. Therefore, we can choose a constant d > 1 such that
& =d& > sup i ()]

(3 3) —o0<t<0

= sup max |p;(s)—ei(s)], i=1,2,...,n,
© —o0<s<01Sisn

and
(3.4)

. i L i D L
— Ci&i + Z aiij(Mj -+ '1—:—61/;1)@ + ZbijkijL]f‘(Mj + I‘;—(S‘L?)gj
j=1 i=1

2

- o L iz o~ L -
= d[—&&; + Za;‘jL;(M]‘ -+ l-—:gL;‘)é“J + Zb”k'l]LJf(MJ + T_——_SL?)%I
j=1 =1

<0,t=12,...,n.

Set
n f L B
= AT — T hye Jwr
Fy(w) = (w—&)& + ;aiij (Mj + 7= Lj)¢5e
(3.5) n ”
7 i L h > wu
+ Zbiij (M; + ij )61/0 |K;j(u)] e  du,
—
where 4 = 1,2,...,n. Clearly, I';(w),i = 1,2,...,n, are continuous functions
on {0, Agl. Since
n . - L .
. — = a1/t . h .
i(0) = — &t + Za,]Lj (M; + 7= L))

j=1
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— L
+ BT + L6 [ 1Kswlda
i=1
n L L h
<"szz+ZGiJL (M +1—_-5L )5
Jj=1

S L
+ Zbijkiij(Mj + T:—(SL;L)gj <0,

j=1
where ¢=1,2,...,n, we can choose a positive constant A € [0, Ag] such that
(3.6)
() = @i L e
i(A) = (A _Cz'gz‘f‘zawl/ 135 ])53
=1

n I oo ) ‘
+ ZbijL§<Mj + T:-SL?)EJ /0 |Kij(u)|e)‘ du<0,1=1,2,...,n

We consider the Lyapunov functional
(3.7) Vi(t) = |w()leM, i=1,2,...,n.

Calculating the upper right derivative of V;(t) along the solution y(t) = {y;(t)}
of system (3.1) with the initial value ¢ = ¢ — ¢*, from (2.5), (2.6), (3.1) and
(Hy), we have
(3.8)

D*(Vi(t))

< = ¢ (t)y:(t) M—i—Z‘a” (95 (y; (¢ = 7 (¢ ))+fc;(t_7ij(t)))

— (@l — 7 (1) *t+2|bm / K (u) (g (s (t — ) + 23(t — )

— (5 (t — w))duleX + Nys (t)]e*

< - Glwi(t) Z Jai (8)(1F; (w3 (¢ = 7o5(£)) + 25 (¢ = 7i5.(8))) (3 (¢ — 75())

+af(t = 755(1)) — (@5t = 1580y (g5t — 735 () + 25 (8 = 735(8)))]
+fi(@5(t -y (t)))ﬁ (i (t = 735 (0)) + 25 (t = 75 (8)) = Fi (a5 (t = 735(8))
(e (8 = g (2))) e

+ Sl 01 [ 1K@ - 0 + 25 - )
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“hiys(t —u) + 250 — ) = fi(@( — u)h;(y;(t — u) + 23t ~ )]
L5 (= whhi(ys (t —u) + 25t — w) = £z (¢ — w)h; (@] (¢ ~ u))|due*
+ Alyi(t)|e™

<0 —cz)lyz(t)Je”JrZEZL Wy + 12 Lyt 7 (2™

n

# B8+ ) [ R e - i,
where ¢=1, 2,...,n

We claim that
(3.9) Vi(t) = lw(t)leM < &  for all >0, i=1,2,....n
Contrarily, there must exist i € {1,2,...,n} and t; > 0 such that
(3.10) Vilt:) =& and V;(t) <&,Vi€(~o0, t;), 1=1,2,...,n,
which implies that
(3.11) Vi(t:) =& =0 and Vj(t)— £ <O,Vte (oo, t:), j=1,2,...,n
Together with (3.8) and (3.11), we obtain

0 < D*Y(V;(t:s) - &)
= DT (V;(ts))

< (A= @)yi(ta)le™ + f:@Lf(M + —L*Lﬁ)lyj(ti — 7ij (t:))| e

+Xn37>2?L§<Mj+ L% / K (w)l[y; (8 — u)|due

= (A —&)lyi(ts) e

7
a5 L] (1 L A =Ty (le T35 (t;
+;asz;(MJ + '——"1 — 6L;L)lyj(tl — T’ij(ti))leA(t i(t ))6/\ (t:)

(3.12)

* SB[ 4 L) [ Rl -0l e

L
<(A—&) §1+}:a@, (M, +—Lh)§jy A
Jj=1

no L o0
£ h ) by
+j;b,]11j (Mj + 1= JLJ)EJ/O |K@](u)]e “du.
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Thus,

L h T
- &)+ Zaw — 5L;-‘)§je>‘

n - L oo N
+ZbijLJf.(Mj+1—_5Lg)§j/o |Kij(uw)|e*du,
j=1

which contradicts (3.6). Hence, (3.9) holds.
Letting ||@|| = ||¢ — #*|| > 0, we can choose a constant M, > 1 such that

(3'13) 1I£fngn{£’} SM&PWP_QO I, i=12...,n
In view of (3.12) and (3.13), we get
Ji(t) = &5 (1)) = |us(t)] < moax {&}e ™ < Mllp— ¢[le™

where 1 = 1,2,...,n, t > 0. This completes the proof. |

4. An example

In this section, we give an example to demonstrate the results obtained in
previous sections.

Example 4.1. Consider the following CNNs with delays:

(4.1)
zi(t) = —ci(t)z1(t) + 3(sint)gy(z1(t — s1n 1)
+2(cos t)gg(wg(t —2sin®t)) + 3(sint) f;° e g1 (x1(t — u))du
+3(cost) [;° e ga(za(t — u))du + $ sm(\/—t),
zh(t) = —calt)za(t) + 3(sin2t)gy (xl(t - 3 cos? t))

+%(cos 4t)g2(xg (t — 4sin®t)) + L (sin 2¢t) fo e~ ¥g1(z1(t — u))du
+3(cos4t) f° e~ gz(acg(t—u))du+ 3 cos(V2t),
where ¢, () = 1+ sin?(v/3t), ca(t) = 1+ sin*(V/5t), §i(¢) = gi(z) = §|a|sinz.
Observe that fi(z) = fi(z) = §|z| hi(z) = hi(z) = sinz, & =& = M; =
Mi=L}=ILt=1, Li=1Lf= L ag=by=4%kj=1,47=12 Then

3 1
L=>2 <1
4, 5 4 )
2 - L
IDll: = 19?2‘2{21 & M@ L] (L &5 + M) + bk L (Lt 125 + M;))}
= i<1,
where || - ||; is the row norm of matrix. It is straight forward to check that

all the conditions needed in Theorem 3.1 are satisfied. Therefore, by Theorem

3.1, system (4.1) has exactly one almost periodic solution, which is globally
exponentially stable.
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Remark 4.1. System (4.1) is a very simple form of CNNs. One can observe
that §1(z) = §2(z) = g1(z) = g2(x) = §|z|sinz and the condition (Ho) is not
satisfied. Therefore, all the results in [1-11] and the references cited therein can
not be applicable to system (4.1). This implies that the results of this paper
are essentially new.

5. Conclusions

In this paper, cellular neural networks with time-varying delays and con-
tinuously distributed delays have been studied. Without assuming the global
Lipschitz conditions of activation functions, some sufficient conditions for the
existence and exponential stability of the almost periodic solutions have been
established. These obtained results are new and they complement previously
known results. Moreover, an example is given to illustrate the effectiveness of
our results
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