Acknowledgement
Supported by : Dankook University
References
- J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66. https://doi.org/10.1007/BF01212349
- J. M. Bony, Calcul symbolique et propagation des singularities pour les equations aux derivees partielles non lineaires, Ann. de l'Ecole Norm. Sup. 14 (1981), 209-246. https://doi.org/10.24033/asens.1404
- D. Chae, On the Euler Equations in the Critical Triebel-Lizorkin Spaces, Arch. Rational Mech. Anal. 170 (2003), 185-210. https://doi.org/10.1007/s00205-003-0271-8
- J.-Y. Chemin, Perfect incompressible fluids, Clarendon Press, Oxford, 1981.
-
H-C Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space
$B^1_{{\infty},1}(R^n)$ , Commun. Part. Differ. Eq. 29 (2004), 1149-1166. https://doi.org/10.1081/PDE-200033764 -
H-C Pak and Y. J. Park, Vorticity existence for an ideal incompressible fluid in
$B^1_{{\infty},1}(R^3){\cap}L^p(R^3)$ , J. Math. Kyoto Univ. 45 (2005), no. 1, 1-20. https://doi.org/10.1215/kjm/1250282965 - E. M. Stein, Harmonic analysis; Real-variable methods, orthogonality, and osillatory integrals, Princeton Mathematical Series 43, 1993.
- M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197-214. https://doi.org/10.1007/s002050050128