• 제목/요약/키워드: glass aggregate

검색결과 130건 처리시간 0.023초

발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구 (The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation)

  • 윤창연;정정호;김명준
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

섬유의 종류에 따른 폐유리와 무기결합재 인조석재의 역학적 특성 (Mechanical Properties of the artificial Stone According to the Ternary System Inorganic Composite and Waste Glass and Fiber type)

  • 유용진;김헌태;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.321-322
    • /
    • 2013
  • Recently, the exhaustion of resource and environmental damage is serious due to the global warming because of the CO2 exhaust and each type the natural aggregate picking described below. meanwhile, The rest is the actual condition gone to the dumping ground that there is nearly no use which the waste glass can recycle and it is recycled. This research applied the waste glass as the cement substitute material the inorganic binder and coares aggregate substitute material. It utilizes the substitute material of the cement according to it and natural aggregate and tries to develop the environment-friendly artificial stone. The inorganic binder used the blast furnace slag, red mud, and fly ash. The straight type steel fiber, PVA fiber, PA fiber, and cellulosic fiber were used with a kind of fiber. As to the experimental item according to it, the compressive strength is the flexural strength and compressive strength.

  • PDF

Temperature Reduction of Concrete Pavement Using Glass Bead Materials

  • Pancar, Erhan Burak;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.39-46
    • /
    • 2016
  • In this study, different proportions of glass beads used for road marking were added into the concrete samples to reduce the temperature gradient through the concrete pavement thickness. It is well known that decreasing the temperature gradient reduces the risk of thermal cracking and increases the service life of concrete pavement. The extent of alkali-silica reaction (ASR) produced with partial replacement of fine aggregate by glass bead was investigated and compressive strength of concrete samples with different proportion of glass bead in their mix designs were measured in this study. Ideal results were obtained with less than 0.850 mm diameter size glass beads were used (19 % by total weight of aggregate) for C30/37 class concrete. Top and bottom surface temperatures of two different C30/37 strength class concrete slabs with and without glass beads were measured. It was identified that, using glass bead in concrete mix design, reduces the temperature differences between top and bottom surfaces of concrete pavement. The study presented herein provides important results on the necessity of regulating concrete road mix design specifications according to regions and climates to reduce the temperature gradient values which are very important in concrete road design.

고밀도 폐유리를 잔골재로 사용한 RC 부재의 휨거동에 관한 해석적 연구 (Analytical Study on Flexural Behavior of Concrete Member using Heavyweight Waste Glass as Fine Aggregate)

  • 차경문;최소영;김일순;양은익
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권1호
    • /
    • pp.88-96
    • /
    • 2020
  • 고밀도 폐유리가 콘크리트를 포함하는 건설 재료로 사용 가능함이 밝혀짐에 따라 본 연구에서는 고밀도 폐유리를 잔골재로 적용한 RC 부재의 구조적 거동을 평가하고자 휨거동 실험을 수행하고 그 결과를 비선형 유한요소해석 결과와 비교 검토하였다. 그 결과, 고밀도 폐유리를 잔골재로 사용하게 되면, 균열 개수가 감소하고 균열 간격 및 압괴 면적이 증가하였다. 또한, 고밀도 폐유리를 잔골재로 대체한 부재는 높은 처짐 단계에서 연성이 감소되었다. 이러한 이유로 천연골재를 사용한 부재와 동일한 방법의 해석 기법은 고밀도 폐유리를 잔골재로 대체한 부재의 휨거동에 대한 초기강성, 항복하중 및 최대하중을 제대로 예측하지 못하는 것으로 나타났으나, 압괴 진전에 따른 중립축 깊이가 감소하는 것을 해석적으로 구현하게 되면, 비선형 유한요소 해석 결과가 실험결과를 비교적 잘 예측하는 것으로 나타났다.

폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구 (Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates)

  • 박승범;이봉춘;권혁준
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.213-220
    • /
    • 2001
  • 콘크리트에 폐유리의 사용은 알칼리 실리카 반응(ASR)의 팽창으로 균열과 강도저하를 일으킬 수 있다. 본 연구에서는 폐유리의 혼입률과 색상(갈색, 녹색) 및 폐유리로 인해 발생되는 ASR팽창을 저감시키기 위해 섬유의 종류(강섬유, 폴리프로필렌섬유)와 섬유혼입률에 따른 ASR팽창과 강도특성을 분석하였다. 연구결과 녹색의 폐유리가 팽창량이 비교적 작기 때문에 갈색의 폐유리보다 더욱 유용하며, ASTNM C 1260의 시험에 있어서 폐유리의 혼입으로 인한 퍼시멈(pessimum)량은 발견되지 않았다. 또한, 폐유리와 함께 섬유의 혼입은 폐유리의 실리카와 시멘트 페이스트의 알칼리 사이의 ASR로 인한 팽창과 강도 저하를 저감시키는데 효과적인 것으로 나타났다. 특히 폐유리 혼입률 20%에 대해서 강섬유를 1.5vol.% 혼입하였을 경우 팽창은 40%까지 감소하였으며 휨강도는 폐유리만을 혼입한 것(8$0^{\circ}C$ $H_2O$ 양생)에 비해 110%의 강도발현을 나타내었다.

유리질중공미소구체를 혼입한 경량콘크리트의 중성화 저항성에 관한 실험적 연구 (An Experimental Study on the Carbonation Resistance of Light Weight Concrete Utilizing Hollow glass Micro Sphere)

  • 최영철;박영신;김상헌;전현규;서치호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.258-259
    • /
    • 2014
  • Modern concrete high safety, constructability and economy due to advantages such as buildings used for more than about 70%, but due to the low thermal performance is essential, such as installation of additional insulation is required, and therefore increase the cost of construction, as well as the construction period and condensation Symptoms such as a domestic environment, such as to inhibit the problem by generating such an improvement has been desired. In this study, we want to present the base line data for the development of improved insulation performance concrete with analyzing and evaluating the Durable Properties of the concrete combination of hollow glass microsphere and lightweight aggregate.

  • PDF

Effects of waste glass aggregate on thermal behavior of fly ash alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Eu, Ha Min;Lee, Yae Chan;Nam, Jeong Soo
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.115-116
    • /
    • 2022
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in fly ash (FA) based alkali activated mortar (AAm). AAms were heated at elevated temperature of 200℃, 400℃, 600℃, and 800℃ to explore the residual mass, compressive strength, thermal expansion and change in microstructure of matrix. Results showed greater resistance of AAms with increasing GS content to 50% at each temperature. Owing to the melting of GS at 800℃, the greater matrix bond was observed for AAm incorporating 75% and 100% GS as a result, the residual compressive strength was increased.

  • PDF

Axial strength of FRP-reinforced geopolymeric concrete members: A step towards sustainable construction

  • Mohamed Hechmi El Ouni;Ali Raza;Bisma Khalid;Afzal Ahmed;Muhammad Sohail Jameel;Yasser Alashker
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.687-704
    • /
    • 2023
  • This study aims to examine the structural response of glass fibre-reinforced polymer (Glass-FRP) reinforced geopolymer electronic waste aggregate concrete (GEWC) compression elements under axial compression for sustainable development. The research includes the fabrication of nine GEWC circular compression elements with different reinforcement ratios and a 3-D nonlinear finite element model using ABAQUS. The study involves a detailed parametric analysis to examine the impact of various parameters on the behavior of GEWC compression elements. The results indicate that reducing the vertical distance of glass-FRP ties improves the ductility of GEWC compression elements, and those with eight longitudinal rebars have higher axial load-carrying capacities. The finite element predictions were in good agreement with the testing results, and the put forwarded empirical model shows higher accuracy than previous models by involving the confinement effect of lateral glass-FRP ties on the axial strength of GEWC compression elements. This research work contributes to minimizing the carbon footprint of cement manufacturing and electronic waste materials for sustainable development.