• Title/Summary/Keyword: giant ragweed

Search Result 3, Processing Time 0.016 seconds

Control of an invasive alien species, Ambrosia trifida with restoration by introducing willows as a typical riparian vegetation

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Kim, Gyung-Soon;Pi, Jeong-Hoon
    • Journal of Ecology and Environment
    • /
    • v.33 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • We evaluated the restoration effect by introducing willows as a means of controlling invasions of giant ragweed (Ambrosia trifida L.) on a riparian site. Our preliminary survey demonstrated that a problematic exotic species, giant ragweed and the representative riparian species, Salix koreensis are in competitive exclusive relationship. We planted willows at 1 m intervals on the bank of the Dongmun stream at Munsan, Paju, in Central Western Korea as an experimental restoration practice. We installed two 50 m $\times$ 5 m sized restored and non-restored for this experimental study. The non-restored plots were located on river banks, which were covered with concrete blocks and left in itself without any treatment. The height of willow was measured after each of three consecutive growing seasons and compared with the height of the giant ragweed. Although the height of Salix gracilistyla did not achieve the height of the giant ragweed, the height of S. koreensis surpassed that of giant ragweed in the third year after introduction. The results were also reflected in the relative light intensity on the herb layer of willow stand, and thereby the relative light intensities of stands, which were dominated by S. koreensis or restored by introducing S. koreensis, 1.99 $\pm$ 0.33 (%, mean $\pm$ SD) and 1.92 $\pm$ 0.50 (%, mean $\pm$ SD), respectively were lower than those in the stands treated by S. gracilistyla, 3.01 $\pm$ 0.43 (%, mean $\pm$ SD). The giant ragweed stands receive full sunlight as there are no any vegetation layers higher than the herb layer formed by the giant ragweed. As the result of Detrended Correspondence analysis ordination based on naturally established vegetation, the stands dominated by willows and giant ragweed showed different species composition between both stands. The species composition of the restoratively treated sites resembled the reference sites more than the non-treated sites. The species diversity (H') of the sites restored by introducing S. koreensis and S. gracilistyla was higher than the non-restored site dominated by A. trifida. On the basis of our results, the restoration of riparian vegetation equipped with integrated features could contribute not only to the control of exotic plants including giant ragweed but also to ensure the diversity and stability of riverine ecosystems.

ITS sequence variations in common ragweed and giant ragweed (돼지풀 및 단풍잎돼지풀의 ITS 염기서열 변이)

  • Kim, Young-Dong;Park, Chong-Wook;Sun, Byung-Yun;Kim, Ki-Joong;Lee, Eun-Ju;Kim, Sung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.35 no.4
    • /
    • pp.273-285
    • /
    • 2005
  • Genetic variation of notorious invasive plants, common ragweed (Ambrosia artemisiifolia L.) and giant ragweed (Ambrosia trifida L.) were examined using the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. A total of 18 different ITS types were detected from 156 individuals of common ragweed sampled mainly from the southern part of Korean peninsula whereas four types were identified from 46 individuals of giant ragweed. High sequence diversity observed from common ragweed in Korean populations was interpreted as multiple introduction. Genetic recombination was suggested as possible method for the production of some of the ITS types while point mutation was mainly responsible for the origin of the sequence diversity. This study provided some of basic genetic information needed for understanding of the evolutionary process in ragweed during invasion.

Effects of cutting and sowing seeds of native species on giant ragweed invasion and plant diversity in a field experiment

  • Byun, Chaeho;Choi, Ho;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.256-263
    • /
    • 2020
  • Background: Ambrosia trifida is a highly invasive annual plant, but effective control methods have not been proposed. Among various eradication methods, cutting is a simple measure to control invasive plants, and sowing seeds of native plants may effectively increase biotic resistance to invasion. In this study, we conducted a field experiment with two treatments: cutting and sowing seeds of six native or naturalized plants. Results: We found a significantly lower A. trifida abundance after cutting than in the control (77% decrease). Sowing seeds of native species did not provide any additional benefit for the control of A. trifida, but increased the importance values and diversity of other native vegetation. The abundance of A. trifida was negatively correlated with that of other plant taxa based on plant cover, biomass, and density. However, biotic resistance of sown plants was not effective to control invasion because A. trifida was so competitive. Conclusions: We concluded that cutting is an effective measure to control Ambrosia trifida while sowing seeds of native plants can increase native plant diversity.