• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.024 seconds

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Application of Soil Factor on the Aseismic Design (내진 설계시 지반계수의 합리적 적용에 대한 연구)

  • 이인모;임종석
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.7-20
    • /
    • 1993
  • The first Korean earthquake resistant design code was enacted in 1988. In the code, the soil factor which takes into account both the soil amplification factor and the soil -structare interaction effect is divided into three groups : soil factor, 5 : 1.0, 1.2 and 1.5. In order to assist in choosing the soil factors appropriately in the earthquake resistant design, the local site effects on the based shear force induced by earthquakes are considered in depth for typical soil conditions in Korea. The depth of the alluvial and/or weathered zone is usually not deep and the fresh rock is found at depth shallower than 20 meters, and even at about 10 meters around Seoul. One dimensional wave propagation theory and the elastic half space method are used to obtain the soil -structure interaction effect as well as the soil amplification effect. The kinematic interaction effect due to scattering of waves by pile foundation is also considered. Finally, the soil factor is recommended for each soil condition from loose state to dense, and also from shallow soil depth to deep, so that the designer can choose the factor with-out difficulty.

  • PDF

Simplified Design Method for Stabilizing Piles and its Application (억지말뚝 간편설계법 및 적응성 분석)

  • 정상섬;원진오;박중배;김성열
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.5-14
    • /
    • 2001
  • This paper describes a simplified design method of stabilizing piles based on an experimental tests and an analytical study which can take into account the safety factor of slope and pile spacing. The nonlinear characteristics of the soil-pile interaction for stabilizing piles are modeled by using load transfer method. The interaction factors due to pile spacing and cap rigidity were estimated by using a three dimensional nonlinear finite element approach and laboratory tests. Based on the results obtained, the interaction factors are proposed quantitatively for one-row pile groups with spacing-to-diameter ratios varying far 2.5 to 7.0. The Bishop's simplified method of slope stability analysis is extended to incorporate the soil-pile interaction and determine the safety factor of the reinforced slope. Through the comparative study, it is found that the prediction by present approach is in relatively good agreement with the results of centrifuge tests and field tests and three dimensional finite element analyses.

  • PDF

Investigation of Factors Affecting Vibration Induced Settlement Using Multifactorial Experimental Design (다변수 실험계획법을 이용한 진동침하 영향 요소 연구)

  • ;Drabkin Sergey
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.61-74
    • /
    • 1996
  • Settlement induced by low -level vibration on granular soils is too complect to predict with one or two fact ors. Factors affecting vibration induced settlement were investigated, and a settlement prediction model on granular soils was developed using multifactorial experimental design(MED). Factors such as vibration amplitude, deviatoric stress, confining pressure, soil gradation, duration of vibration, moisture content, and relative density were considered in this study. A special vibratory frame was designed to shake a soil specimen within a triaxial cell. MED allowed the authors to investigate the effect of many factors using a relatively small number of experiments. The most significant factors on settlement were vibrati on amplitued, confining pressure, and defiatoric stress. Comparable settlement was occurred even under low-level vibration ranging from 2.5 to 18mm1sec, and stress am sotropy was found to be an important factor on settlement.

  • PDF

Study on Engineering Characteristics of Mixed Material and Mix Ratio Design to Develope Pipe Mixing Method (관중혼합처리공법 개발을 위한 혼합토 특성 및 최적배합비 산정에 관한 연구)

  • Han, Sang-Jae;Kim, Byung-Il;Hong, Kang-Han;Kang, Byung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • In this study, laboratory tests (flow, unit weight, unconfined compressive strength and bleeding tests) were performed to evaluate engineering properties of treated soil to improve pipe mixing method. As result, flow and bleeding properties are proportional to the water contents. The unit weight and unconfined compressive strength is decreased as the water contents increased. Comparing equipments contact pressure with bearing capacity of the mixed soil for dozer, backhoe and belt conveyor are immediately appliable. The applicable water content range is estimated from 80% to 200% by pipe mixing method using cement. Also, The design chart is developed from the results.

Driveability Analysis of Driven Steel Tublar Piles (타입 강관말뚝의 항타관입성 분석)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.123-132
    • /
    • 2003
  • The final purpose of driveability analysis is to confirm whether a selected hammer drives a pile to a desired penetration depth and/or capacity without damage. The capacities from static analysis methods are meaningless if the pile cannot be driven to the required design depth and the ultimate capacity without damage. It often occurs that there are big differences between the capacities from measurements and calculations. It may be because the driveability is not evaluated due to the lack of engineers' understanding of the driveability of pile driving. The engineers in the field sometimes assume simply the penetration depth with standard penetration value only. In this study some test pilings with dynamic pile loading tests were performed to give an understanding about the driveability. The influence factors(driving resistance, impedance, material strength, hammer) on the driveability of steel piles were analysed with the monitoring data obtained from the dynamic load tests. It was shown that more cost-effective design can be made in case the driveability analysis and high strength steel pile are appropriately adopted in the design.

Evaluation of Analysis Code of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel (개착식 터널에서 파형강판 라이닝의 해석 기법 평가)

  • Kim, Jung-Ho;Kim, Nak-Young;Lee, Yong-Jun;Lee, Seung-Ho;Hwang, Young-Chul;Cho, Chul-Shin;Chung, Hyung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1316-1323
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. In addition, through using that conditions, CHBDC(2000, Canadian Highway Bridge Design Code) is evaluated if it could be applied to the design by comparing with the numerical analysis results. As the behaviour characteristics of the Corrugated Steel Plate Lining by CHBDC and the static numerical analysis are analyzed, both the methods show the same linear increases of the compressive stress according to the increase of the backfill height. The CHBDC of the dead load condition has very similar tendency by comparing with the result of the static numerical analysis.

  • PDF

Consideration on design procedure of room-and-pillar underground structure part I: parametric study (주방식 지하구조물의 설계 방법 고찰 Part I: 매개변수 연구)

  • Lee, Chulho;Hwang, Jedon;Kim, Eunhye;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • In this study, in order to suggest the design method for supports in the room-and-pillar underground structure, the case study was carried out. In the case study, shape of rock pillar and room was mainly considered. From the analysis, a displacement at the roof, the maximum principle stress and plastic state were examined. To optimize variables in the case study, cases from the Seoul metro station were analyzed, then a target depth of the underground structure and ground conditions were determined. And the height of rock pillar and room were chosen from the assumed purpose of underground space, i.e. living/office and warehouse. Total cases of analysis was 180 cases including 3 types of ground condition, 5 types of rock pillar and 6 types of roof span. It is expected that results from analysis can be used to determine the installation of support in room-and-pillar underground structure with stability, utilization efficiency of underground space and applicability of vehicles.

A Study on the Selection System of Waterproof Method by Using Database (데이터베이스화에 의한 지수공법 선정시스템에 관한 연구)

  • 천병식;최춘식;하광현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.43-59
    • /
    • 2002
  • In this study, database systems which were used to select the waterproof method according to leakage patterns of underground structures were built by performing pilot tests, reviewing literatures, and analysing the gathered data statistically. The database was built by using check lists which consisted of 5 major items and 73 subdivided items, and 26 major parameters according to 4 classified grades were determined on the base of survey which considered various in-situ conditions. The database of waterproof methods was comprised of 10 methods which were applied in Korea. From the database of waterproof methods, application ranges and design conditions of waterproof methods were suggested. From the results of study, database system consists of parameters selection database, waterproof method database, and design condition database. From the results of pilot tests, when the database of waterproof methods was applied to design stage, saving time and reducing mistakes for selecting waterproof method were gained. In addition, when the database of waterproof methods was applied to construction stage, effects such as evaluation of applicability of waterproof method, improvement of constructability and post management were expected.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.