• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.029 seconds

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

Suitability for Subgrade Material of Weathered Granite Soils in the Gansung area of Gangwon-do (강원도 간성지역에 분포하는 화강풍화토의 도로토공 재료특성 연구)

  • Jeoung, Jae-Hyeung;Yu, Jun;Kim, Jin-Man;Kim, Seung-Hyun;Lim, Kwang-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Upon encountering weathering soil at a construction site, it may be necessary to change the design and construction plans for geotechnical structures. When weathering soil is exposed to air, the weathering process proceeds rapidly, resulting in significant damage to geotechnical structures, particle defects, and an increase in moisture sensitivity. The management of weathering-soil compaction is challenging. Because the engineering properties of weathering-soils vary regionally, it is important to report the result of research into the regional characteristics of such soils. At two locations of granite gneiss in the Gansung area of Gangwon-do, geological studies were performed at 22 and 8 sites, respectively. At each site, test samples were collected for analysis by XRD and to measure particle size, consistency, and compaction. To evaluate the suitability of the material for road subgrade, we examined the interrelationship between CBR value and the uniformity coefficient, the 200 sieve passing ratio and the aggregate ${\geq}$ 2 mm) content. We found that for the weathered granite soil, aggregate sized > 2 mm has a significant effect on the CBR value. In addition, the mixing of aggregate sized > 2 mm with sub-quality soil improves the soil condition.

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

Development of Probabilistic Site Coefficient (확률론적 지진계수 개발)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.707-714
    • /
    • 2009
  • The design response spectrum generally used in Korea is decided by the site coefficients determined by deterministic methodology, while it is based on probabilistic seismic hazard analysis. The design response spectrum has to be made using probabilistic method which includes uncertainties of ground motions and ground properties for coincide with probabilistic methodology of seismic hazard analysis. In this study probabilistic site coefficients were developed, which were defined by the results of site response analysis using a set of ground motion that was compatible with present seismic hazard map. The design response spectrum defined by probabilistic seismic coefficients resulted in lower spectrum in long period area and larger spectrum in short period area. Also, the maximum spectral accelerations in site class D and site class E were lower than one in site class C while in the previous design response spectrum the maximum spectral acceleration increased from site class A to E.

  • PDF

A Study of Reinforced Design Chart for Soil Nailing Slopes (Soil Nailing 공법을 적용하기 위한 사면보강 설계도표에 관한 연구)

  • Seo, Jin-Won;Kim, Hak-Moon;Jang, Kyung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1009-1019
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, in order to determine the economical length ratio and nail angle, complicated analytical need to be applied by means of computer programs. Therefor this suggested Soil stability Chart for nailed slopes which may be very useful for pre-design, rapidly design, and final check. Three slope types, three nail length and three nail angles are selected for the stability analysis by using limit equilibrium method of Bishop and French Method. From the above results, this study propose the slope reinforced design charts for dry season and rainy season. This proposed reinforced design charts can check dry season as well as rainy season, also these charts can provide reinforcing requirement, soil nail's economical length ratio and nail angle as well.

  • PDF

Importance of global slope stability analysis in design of geosynthetic reinforced walls in tiered configuration (계단식 보강토 옹벽 설계시 사면안정해석의 중요성)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.176-183
    • /
    • 2008
  • This paper highlights the importance of carrying out global slope stability analysis as part of design calculations for geosynethetic walls in tiered configuration. Four design case histories were selected to examine the appropriateness of their design by performing additional slope stability analyses using the shear strength reduction method with in the frame work of finite element analysis. The results indicated that all of the walls examined, which were designed to meet the current design guide lines, did not satisfy the global slope stability requirement, and that longer reinforcements are required in the upper tiers to achieve the minimum factor of safety. Practical implications of the findings are discussed.

  • PDF

Review of Design Guide and Case Study on Bored Prefabricated Piling Method in Architectural Building Foundation (건축기초에서의 매입말뚝 설계기준 및 사례)

  • Lee, Won-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.549-558
    • /
    • 2008
  • Well known and widely used in urban area and limited installation condition, a low noise and vibration piling method which has being called Bored Prefabricated Piling Method was reviewed in terms of design guide, and introduced a few case as well. Among the areas being applied of that method, a structural guide of architectural foundation was reviewed and compared to civil engineering foundation area to provide wider information for the foundation engineers. With introducing a few case application including pile load testing review especially dynamic testing in normal building foundation work, engineers may have a useful information on the design and construction of the piling method even different engineering area. It may also make enhancement a view of foundation engineering knowledge to various pile foundation area.

  • PDF

Generation of Design Spectrum Compatible Ground Motion in Time Domain (시간영역에서 생성되는 설계응답스펙트럼 맞춤형 지진파 생성)

  • Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1250-1257
    • /
    • 2009
  • Due to the improvement of the seismic hazard analysis method and the design code, dynamic analysis method is widely used. To conduct dynamic analysis, various coefficients should be designated. The time history acceleration is one of the most essential factor. However, strong earthquake motion data from the outside of the country have been used to conduct dynamic analysis without considering of the ground motion parameters. In this study, the methodology to choose appropriate input motion is developed by using time domain design spectrum matching procedure. Two examples are applied to verify the methodology. The Result shows that the methodology satisfies seismic circumstances and the design code.

  • PDF

A study on conceptual evaluation of structural stability of room-and-pillar underground space (주방식 지하공간의 구조적 안정성 평가개념 정립에 관한 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.585-597
    • /
    • 2013
  • In this study, in order to evaluate stability of the room-and-pillar underground structure, a series of preliminary numerical analyses were performed. Design concept and procedure of an underground structure for obtaining a space are proposed, which should be different from structural design for the room-and-pillar in mine. With assumed material properties, a series of numerical analyses were performed by varying size ratios of room and pillar and then the failure modes and location at yielding initiation were investigated. From the results, relationship between the ratio of pillar width to the roof span (w/s) and overburden pressure at failure initiation shows a relatively linear relation, and the effect of w/s on structural stability is much more critical than the ratio of pillar width and height (w/H) which is a crucial parameter in design of the room-and-pillar mining. It means that roof tensile failure and shear failure at shoulder and pillar are necessary to be considered together for confirming overall structural stability of the room-and-pillar structure, rather than considering the pillar stability only in mining. Failure modes and location at failure initiation were varied with respect to the ratio of room and pillar widths. Therefore, it is necessary to simultaneously consider stability of both roof span and pillar for design of underground structure by the room-and-pillar method.

Design of Sedimentary Rock Slopes in River Diversion Works (가배수로 터널공사의 퇴적암 사면 안정화 설계)

  • Jee, Wang-Ruel
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.17-32
    • /
    • 1998
  • The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia, The power station will consist of a 210m height concrete faced rockfill dam. During the construction of the dam and the power facilities the Balui river has to be diverted by three diversion tunnels with a length of some 1,400m each. The inner diameter of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet and outlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four. defined Rock Mass Types (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each 'global' slope without any rock support and shotcrete system. In the second stage, it is calculated for each 'local'slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF