DOI QR코드

DOI QR Code

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS

GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류

  • SUN, Chang-Guk (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • KIM, Han-Saem (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 선창국 (국지질자원연구원 지진연구센터) ;
  • 김한샘 (국지질자원연구원 지진연구센터)
  • Received : 2016.08.25
  • Accepted : 2016.10.27
  • Published : 2016.12.31

Abstract

Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

지진으로 인한 재난은 지반운동의 증폭과 관련된 부지효과의 차이로 인해 흔히 견고한 토사나 암반에 비해 연약한 토사 지역에서 심하게 나타나고 있다. 지역적 관점에서 이러한 차이는 대상 영역 전체의 토사 지층 분포의 예측을 통해 우선 파악할 수 있다. 토사는 대개 내륙에 비해 강이나 해안 주변에서 두껍게 발달하고 있다. 본 연구에서는 해안 대도시 인천을 대상으로 부지효과를 평가하고 지진재해 정보를 제공하고자, 연구 영역 전체의 지반지층에 대해 GIS 기반의 공간예측을 수행하였다. 약 7,000 여공의 기존 시추조사 자료를 수집하여 GIS DB로 구축하였으며, 추가적으로 현장답사를 통해 지표지반 자료들을 확보하였다. 구축된 지반 DB를 토대로 부지고유 지진응답 매개변수들에 관한 공간구역화 지도들을 지역 지진대책에서의 활용을 위해 제시하였다. 지반지진공학 매개변수별 공간 구역화 수행을 통해 인천 확장영역의 지진위험도를 평가하고, 부지분류 구역정보를 도출함으로써 내진설계의 부지증폭계수를 결정하였다. 이 때 대상 영역 전체에 걸쳐 부지분류에 관한 공간구역화를 부지응답 매개변수별로 수행하고 각 매개변수별 공간분포를 비교하였다. 이에 따라 인천 행정 단위별로 부지주기의 공간구역화를 수행하였으며, 지반지진공학적 취약부지를 평가함으로써 해안 대도시에서의 지진재해 저감을 위한 의사결정 지원의 활용가능성을 확인하였다.

Keywords

References

  1. Chun, S.H., C.K. Sun, and C.K. Chung. 2005. Application of geostatistical method for geo-layer information. Journal of Korean Society of Civil Engineering 25(2C):103-115 (천성호, 선창국, 정충기. 2005. 지반 정보화를 위한 지구 통계학적 방법의 적용. 대한토목학회 논문집 25(2C):103-115).
  2. Dobry, R., R.D. Borcherdt, C.B. Crouse, I.M. Idriss, W.B. Joyner, G.R. Martin, M.S. Power, E.E. Rinne, and R.B. Seed. 2000. New site coefficients and site classification system used in recent building seismic code provisions. Earthquake Spectra 16(1):41-67. https://doi.org/10.1193/1.1586082
  3. Green, R.A., S.M. Olson, B.R. Cox, G.J. Rix, E. Rathje, J. Bachhuber, J. French, S. Lasley, and N. Martin. 2011. Geotechnical aspects of failures at Port-au-Prince seaport during the 12 January 2010 Haiti earthquake. Earthquake Spectra 27(S1):S43-S65. https://doi.org/10.1193/1.3636440
  4. ICBO(International Conference of Building Officials). 1997. Uniform building code, volume 2: structural engineering design provisions. International Conference of Building Officials. pp.12-13.
  5. ICC(International Code Council). 2000. 2000 International building code. International Code Council. pp.5-9.
  6. ICC(International Code Council) 2006. 2006 International building code. International Code Council. pp.20-22.
  7. Kang, S.Y. and K.H. Kim. 2009. A case study of GIS-based site classification in the Gyeongsang Province constrained by geologic and topographic information. Journal of the Korean Association of Geographic Information Studies 12(4):136-145. (강수영, 김광희. 2009. GIS기반의 지질,지형 자료를 활용한 경상도지역의 지반분류 사례. 한국지리정보학회지 12(4):136-145).
  8. Kienzle, A., D. Hannich, W. Wirth, D. Ehret, J. Rohn, V. Ciugudean, and K. Czurda. 2006. A GIS-based study of earthquake hazard as a tool for the microzonation of Bucharest. Engineering Geology 87(1):13-32. https://doi.org/10.1016/j.enggeo.2006.05.008
  9. Kim, D.S., C.K. Chung, C.G. Sun, and E.S. Bang. 2002. Site assessment and evaluation of spatial earthquake ground motion of Kyeongju. Soil Dynamics and Earthquake Engineering 22(5):371-387. https://doi.org/10.1016/S0267-7261(02)00023-4
  10. Kim, D.S. and J.K. Yoon. 2006. Development of new site classification system for the regions of shallow bedrock in Korea. Journal of Earthquake Engineering 10(3):331-358.
  11. Kim, H.S. and C.K. Sun. 2016. Visible assessment of earthquake-induced geotechnical hazards by adopting integrated geospatial database in coastal facility areas. Journal of the Earthquake Engineering Society of Korea 20(3):171-180 (김한샘, 선창국. 2016. 복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가. 한국지진공학회논문집 20(3):171-180). https://doi.org/10.5000/EESK.2016.20.3.171
  12. Kim, I.H. 2011. Seismic design of domestic civil facilities, Tohoku earthquake and evolution of Korean seismic design procedures. Journal of the Earthquake Engineering Society of Korea pp.45-72 (김익현. 2011. 국내 토목시설물의 내진설계, 일본 대지진과 우리나라 내진설계의 방향. 한국지진공학회 45-72쪽).
  13. Lee, S.H., C.G. Sun, J.K. Yoon, and D.S. Kim. 2012. Development and verification of a new site classification system and site coefficients for regions of shallow bedrock in Korea. Journal of Earthquake Engineering 16(6):795-819. https://doi.org/10.1080/13632469.2012.658491
  14. MOCT(Ministry of Construction and Transportation). 1997. Study of seismic design guideline(II). p.492 (건설교통부. 1997. 내진설계기준연구(II). 492쪽).
  15. Rodriguez-Marek, A., J.D. Bray and N.A. Abrahamson. 2001. An empirical geotechnical seismic site response procedure. Earthquake Spectra 17(1):65-87. https://doi.org/10.1193/1.1586167
  16. Scott, B.M. and L.H. Carlton. 1999. Applications and issues of GIS as tool for civil engineering modeling. Journal of Computing in Civil Engineering ASCE 13(3):144-152. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:3(144)
  17. Sun, C.G. 2004. Geotechnical information system and site amplification characteristics for earthquake ground motions at inland of the Korean Peninsula. Ph.D. Thesis, Seoul Nat'l Univ., Seoul, Korea. pp.131-154.
  18. Sun, C.G. 2009. Seismic zonation on site responses in Daejeon by building geotechnical information system based on spatial GIS framework. Journal of Korean Geotechnical Society 25(1):5-19 (선창국. 2009. 공간 GIS 기반의 지반 정보 시스템 구축을 통한 대전 지역의 부지 응답에 따른 지진재해 구역화. 한국지반공학회논문집 25(1):5-19).
  19. Sun, C.G. 2010a. Suggestion of additional criteria for site categorization in Korea by quantifying regional specific characteristics on seismic response. Geophysics and Geophysical Exploration 13(3):203-218 (선창국. 2010. 지역고유 지진응답 특성 정량화를 통한 국내 부지 분류 기준의 추가 반영 제안. 지구물리와 물리탐사 13(3):203-218).
  20. Sun, C.G. 2010b. Seismic site classes according to site period by predicting spatial geotechnical layers in Hongseong. Journal of the Korean Association of Geographic Information Studies 13(4):32-49 (선창국. 2010. 홍성 지역의 공간 지층정보 예측을 통한 부지주기 토대의 지진 공학적 부지분류. 한국지리정보학회지 13(4):32-49)
  21. Sun, C.G. 2012. Applications of a GISbased geotechnical tool to assess spatial earthquake hazards in an urban area. Environmental Earth Sciences 65(7):1987-2001. https://doi.org/10.1007/s12665-011-1180-z
  22. Sun, C.G., B.H. Kim, and C.K. Chung. 2006. Investigation on weathering degree and shear wave velocity of decomposed granite layer in Hongsung. Journal of Korean Society of Civil Engineering 26(6C):431-443 (선창국, 김보현, 정충기. 2006. 홍성 지역 화강 풍화 지층의 풍화도 및 전단파 속도에 관한 고찰. 대한토목학회논문집 26(6C):431-443).
  23. Sun, C.G., B.S. Chung, J.H. Kim, S.K. Hong, and K.S. Kim. 2010. Implementation of an earthquake alarming system based on acceleration monitoring at coastal LNG receiving terminals. Journal of Korean Society of Engineering Geology 20(3):339-348 (선창국, 정병선, 김준호, 홍성경, 김기석. 2010. 해안 천연가스 인수기지에 대한 가속도 계측 기반의 지진경보 시스템 구축. 지질공학 20(3):339-348).
  24. Sun, C.G. and C.K. Chung. 2008. Regional estimation of site-specific seismic responses at Gyeongju by building GIS-based geotechnical information system. Journal of the Korean Association of Geographic Information Studies 11(2):38-50 (선창국, 정충기. 2008. GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가. 한국지리정보학회지 11(2):38-50).
  25. Sun, C.G., C.K. Chung, and D.S. Kim. 2005a. A proposition of site coefficients and site classification system for design ground motions at inland of the Korean Peninsula. Journal of Korean Geotechnical Society 21(6):101-115 (선창국, 정충기, 김동수. 2005a. 국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭계수 및 지반 분류 체계 제안. 한국지반공학회논문집 21(6):101-115).
  26. Sun, C.G., D.S. Kim, and C.K. Chung. 2005b. Geologic site conditions and site coefficients for estimating earthquake ground motions in the inland areas of Korea. Engineering Geology 81(4):446-469. https://doi.org/10.1016/j.enggeo.2005.08.002
  27. Sun, C.G., D.S. Yang, and C.K. Chung. 2005c. Evaluation of site-specific seismic amplification characteristics in plains of Seoul Metropolitan Area. Journal of Korean Geotechnical Society 9(4):29-42 (선창국, 양대성, 정충기. 2005c. 서울 평야 지역에 대한 부지 고유의 지진 증폭 특성 평가. 한국지진공학회 논문집 9(4):29-42).
  28. Sun, C.G., H.S. Kim, C. K. Chung, and H.C. Chi. 2014. Spatial zonations for regional assessment of seismic site effects in the Seoul metropolitan area. Soil Dynamics and Earthquake Engineering 56:44-56. https://doi.org/10.1016/j.soildyn.2013.10.003
  29. Sun, C.G. and S.H. Chun. 2014. Preliminary estimation of earthquake losses based on HAZUS in a coastal facility area with blocks applying site classification. Journal of the Korean Association of Geographic Information Studies 17(4):10-27 (선창국, 천성호. 2014. 블록별 부지분류 적용 해안시설 영역에서의 HAZUS 기반 지진피해 추정. 한국지리정보학회지 17(4):10-27). https://doi.org/10.11108/kagis.2014.17.4.010
  30. Sun, C.G., S.H. Chun, T.G. Ha, C.K. Chung, and D.S. Kim. 2008. Development and application of GIS-based tool for earthquake-induced hazard prediction. Computers and Geotechnics 35(3):436-449. https://doi.org/10.1016/j.compgeo.2007.08.001
  31. Wald, D.J. and T.I. Allen. 2007. Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America 97(5): 1379-1395. https://doi.org/10.1785/0120060267
  32. Wills, C.J., M. Petersen, W.A. Bryant, M. Reichle, G.J. Saucedo, S. Tan, G. Taylor, and J. Treiman. 2000. A site-conditions map for California based on geology and shear-wave velocity. Bulletin of the Seismological Society of America 90(6B):187-208. https://doi.org/10.1785/0119990070
  33. Yoo, H.H., S.S. Kim, K.Y. Park, and W.S. Choi. 2005. Disasters risk assessment of urban areas by geospatial information systems. Journal of the Korean society for geo-spatial information system 13(3):41-52 (유환희, 김성삼, 박기연, 최우석. 2005. 지형공간정보체계에 의한 도시지역 재해위험도 평가. 지형공간정보학회지 13(3):41-52).

Cited by

  1. 공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가 vol.52, pp.6, 2016, https://doi.org/10.9719/eeg.2019.52.6.573