• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.023 seconds

Design-Parameter Computation of Subsurface Investigation Profile on Probability Method (확률론적 방법에 의한 지반조사 자료의 설계정수 산정)

  • 신은철;김종인;이준철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.833-840
    • /
    • 2003
  • The stability of structure, effectiveness of design and construction are very important factors in soil-structure design. The design-parameter is based on the test through laboratory-test and field-test. There are two ways to obtain the design-parameter. One is to through test, and the other is through relative documents and references. Recently, statistics has been used to get reliable data. In this study, Kriging method as Geostatistics and the theory of Bayesian's inference are used and the design-parameters are obtained. As the result of this study to the design-parameter is reliable and information about soil condition and soil properties in design and construction is easily found.

  • PDF

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계에 관한 비교연구)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 2000
  • This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

  • PDF

A Comparative Study on Connection Strength Evaluation Methods of Wall Facing-Geosynthetics using the Design Case (설계사례를 이용한 전면 벽체/보강재의 연결강도 평가방법에 관한 비교 연구)

  • Han, Jung-Geun;Hong, Ki-Kwon;Shin, Ju-Oek;Cho, Sam-Deok;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.21-29
    • /
    • 2009
  • The connection strength between wall facing and geosynthetics should be evaluated by experimental method in the design of reinforced earth wall. However, the evaluation result of connection strength using the typical design method, FHWA(1996) and NCMA(1997), is excessively because of a safety factors. Therefore, this study is conducted in connection strength test between wall facing and geosynthetics, then the test result is applied to the design case by NCMA, FHWA and Soong & Koener(1997). The results confirmed that the evaluation method by Soong & Koener, which is used ultimate connection strength by connection strength test in allowable connection strength, is satisfied with stable in design.

  • PDF