• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.023 seconds

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

A Study on the Behavior of a Closely-Spaced Tunnel by Using Scaled Model Tests (축소모형실험을 통한 근접터널의 거동에 관한 연구)

  • Ahn, Hyun-Ho;Choi, Jung-In;Lee, Seok-Won;Shim, Seong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.189-198
    • /
    • 2008
  • Lots of roadway tunnel have been almost constructed in forms of closely-spaced tunnel in korea. If closely-spaced tunnel is not constructed at a sufficient distance between tunnels, the problem of stability can occur. However, the case that can not secure a sufficient distance between tunnels can occur due to a difficulty in buying a lot and an issue of popular complaint and environmental disruption. Generally, tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced tunnel by using homogeneous material were performed and induced displacements were measured around the tunnel openings during excavation. The influence of distance between tunnels on the behavior of closely-spaced tunnel was investigated.

  • PDF

Lateral Behavior Characteristics of Short Pile in Sands by Model Tests (모형실험에 의한 사질토 지반에서 단말뚝의 수평거동 특성)

  • Kim, Jin-Bok;Park, Jong-Un;Han, Dae-Hwan;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.366-376
    • /
    • 2008
  • The model tests of short pile with very small pile length/diameter(L/D) were performed in this paper. Varying the pile diameter, length, and the lateral loading point, the lateral resistance and behavior of very short pile were studied in this model tests. The experimental and analytical results are as follows. The lateral ultimate resistance of short pile in sands was the maximum at the point of h/L=0.75, regardless of pile length/diameter(L/D). As the pile diameter is larger, the lateral ultimate resistance of pile with L/D=1 decreases a little and the lateral resistance increases according to the ratio of pile length/diameter. As the lateral loads are acting on the pile, the displacement of pile head is maximum at the pile top of h/L=0, but minimum at the middle point of the pile. And if the loading point is under the middle of pile, the displacement of pile head occurs oposite in the loading direction, but its magnitude is very small.

  • PDF

Analysis of Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 군말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung;Kwak, Ki-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1132-1139
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. As the results, the axial capacity of the composite pile was about 73% larger than that of the steel pipe pile and about 14% larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 51% of that of the steel pile and about 19% of that of the concrete pile.

  • PDF

Behavior of Shear Zone by Improved Direct Shear Test (개선된 직접전단시험을 이용한 전단영역의 거동)

  • Byeon, Yong-Hoon;Truong, Q. Hung;Tran, M. Khoa;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.607-614
    • /
    • 2010
  • Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of shear zone in a direct shear test using shear wave and electrical resistivity measurements. An innovative direct shear box made of transparent acrylic material has been developed to prevent direct electric current. Bender elements and electrical resistivity probe are embedded in the wall of direct shear box to estimate the shear wave velocities and the electrical resistivity at the shear and non-shear zones. Experimental results show that the void ratio and shear wave velocity at shear zone increase during shearing while the values remain constant at non-shear zone. The results demonstrate correlation among the contact force, small strain shear modulus, and void ratio at shear zone. This study suggests that the application of the modified direct shear box including shear wave and electrical resistivity measurements may become an effective tool for analyzing soil behavior at shear zone.

  • PDF

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Characteristics of Sand-Rubber mixtures with Strain Level (모래-고무 혼합재의 변형율 크기에 따른 거동 특성)

  • Lee, Chang-Ho;Truong, Q. Hung;Eom, Yong-Hun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.90-96
    • /
    • 2008
  • Engineered mixtures composed of rigid sand particles and soft rubber particles are tested to investigate their behavior with strain level. Mixtures are prepared with different volumetric sand fractions (sf) to identify response using small strain resonant column, intermediate strain oedometer, and large strain direct shear tests. The small strain shear modulus and damping ratio are determined with volumetric sand fractions. The asymmetric frequency response curve increases with decreasing sand fraction. Linear responses of shear strain and damping ratio with shear strain are observed at the mixture of sf=0.2. Vertical strain increases with decreasing sand fraction. Mixtures with $04.{\leq}sf{\leq}0.6$ show the transitional stress-deformation behavior from rubber-like to sand-like behavior. The friction angle increases with the sand fraction and no apparent peak strength is observed in mixture without sf=1.0.

  • PDF

Seepage Behavior of Sea Dyke Final Closure with Tidal Variation (조위변화에 따른 방조제 끝막이 사석단면의 침투거동)

  • Yoo, Jeon-Yong;Oh, Young-In;Kim, Hyun-Tae;Jeung, In-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.800-807
    • /
    • 2006
  • Sea dyke construction is simply defined that the cutting procedure of sea water flow. Sea dyke construction is more difficult than in-land construction because it’s placed on deep seabed and exposed sea wave attack. Especially, the final closure of sea dyke is most dangerous due to the fast velocity of tidal flow. The final closure section is consisted with vast rubble and heavy stone gabion, therefore the discharge velocity at land side of final close section is irregularly and sometime occur the fast discharge velocity. In this study, the seepage model test performed to evaluate seepage behavior with tidal variation of final closure and continuous sea dyke section such as discharge velocity, hydraulic gradient, and phreatic line. Based on the seepage model test results, the maximum discharge velocity of final closure section is 1.7m/sec. Also the local discharge velocity increment and vortex is occurred.

  • PDF

Characteristics of Undrained Shear Behavior for Nak-Dong River Sand Due to Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.916-923
    • /
    • 2005
  • In this study, to observe aging effect of undrained shear behavior for Nak-Dong River sand, undrained static and cyclic triaxial tests were performed with changing relative density ($D_r$), consolidation stress ratio($K_c$) and consolidation time. As a result of the test, the modulus of elasticity to all samples estimated within elastic zone by the micro strain of about 0.05% in case of static shear behavior increased with the lapse of consolidation time significantly, so aging effect was shown largely. Also strength of phase transformation point(S_{PT}$) and strength of critical stress ratio point($S_{CSR}$) increased with the lapse of consolidation time. Undrained cyclic shear strength($R_f$) obtained from the failure strain 5% increased in proportion to relative density($D_r$) and initial static shear stress($q_{st}$), $R_f$ of consolidated sample for 1,000 minutes increased about 10.6% compared to that for 10 minutes at the loose sand, and $R_f$ increased about 7.0% at the medium sand. In situ application range of $R_f$ to the magnitude of earthquake for Nak-Dong River sand was proposed by using a increasing rate of $R_f$ as being aging effect shown from this test result.

  • PDF

Behavior of Grouted Bolts in Consideration of Seepage Forces (침투수력을 고려한 전면접착형 록볼트의 거동연구)

  • Lee, In-Mo;Kim, Kyung-Hwa;Shin, Jong-Ho;Park, Jong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1259-1266
    • /
    • 2005
  • In a NATM tunnel, fully grouted bolts are widely used as part of supporting system. Grouted bolts play an important role not as to take some parts of load acting on a tunnel lining but as to reinforce the ground adjacent the tunnel. In conjunction with tunnel construction, the presence of groundwater may pose a number of difficulties. With respect to tunnel design, influences of groundwater on tunnel behavior have been considered in many aspects. However, the effect on grouted bolts has been rarely investigated. In this study, the behavior of grouted bolts, which are affected by the seepage forces, was examined. To investigate the effects of seepage forces, the theoretical solutions for a drained condition were also found. Based on the theoretical solutions, ground reaction curves considering seepage forces were obtained. By comparing the ground reaction curves supported by grouted bolts with those for the unsupported cases, the effect of reinforcement was evaluated. Finally, through comparison between supported ground reaction curves in the drained condition and those in the case of groundwater flow, it was found that the grouted bolts are more structurely beneficial when the seepage occurs towards the tunnel than when there is no groundwater flow.

  • PDF