DOI QR코드

DOI QR Code

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Received : 2014.03.30
  • Accepted : 2014.08.21
  • Published : 2015.01.25

Abstract

This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

Keywords

References

  1. Acar, B.Y. and El-Tahir, A.E. (1986), "Low strain dynamic properties of artificially cemented sands", J. Geotech. Eng. Div., ASCE, 112(11), 1001-1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001)
  2. Ahmad, I. (1993), "Laboratory study on properties on rubber soils", Report No. FHWA/IN/JHRP-93/4, Joint Highway Research Project, Indiana Department of Transportation, USA.
  3. Bosscher, P.J., Edil, T. and Kuraoka, S. (1997), "Designof highway embankments using tire chips", J Geotech. Geoenviron. Eng., ASCE, 123(4), 295-304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)
  4. Bressani, L.A. (1990), "Experimental properties ofbonded soils", Ph.D. Thesis, University of London, London, UK.
  5. Burland, J.B. and Symes, M. (1982), "A simple axial displacement gauge for use in the triaxial apparatus", Geotechnique, 32(1), 62-65. https://doi.org/10.1680/geot.1982.32.1.62
  6. Cabalar, A.F. (2010), "Applications of the triaxial, resonant column and oedometer tests to the study of micaceous sands", Eng. Geol., 112(1-4), 21-28. https://doi.org/10.1016/j.enggeo.2010.01.004
  7. Clayton, C.R.I. and Heymann, G. (2001), "Stiffness of geomaterials at very small strains", Geotechnique, 51(3), 245-255. https://doi.org/10.1680/geot.2001.51.3.245
  8. Clayton, C.R.I. and Khatrush, S.A. (1986), "A new device for measuring local axial strains on triaxial specimens", Geotechnique, 36(4), 593-597. https://doi.org/10.1680/geot.1986.36.4.593
  9. Clough, G.W., Kuck, W.M. and Kasali, G. (1979), "Silicate-stabilized sands", J. Geotech. Eng. Div., ASCE, 105(1), 65-82.
  10. Clough, G.W., Sitar, N., Bachus, R.C. and Shaffi Rad, N. (1981), "Cemented sands under static loading", J. Geotech. Eng. Div., ASCE, 107(6), 799-817.
  11. Consoli, N.C., Vendruscolo, M.A., Fonini, A. and Rosa, F.D. (2009), "Fiber reinforcement effects on sand considering a wide cementation range", Geotext. Geomembr., 27(3), 196-203. https://doi.org/10.1016/j.geotexmem.2008.11.005
  12. Coop, M.R. and Atkinson, J.H. (1993), "The mechanics of cemented carbonate sands", Geotechnique, 43(1), 53-67. https://doi.org/10.1680/geot.1993.43.1.53
  13. Cuccovillo, T. and Coop, M.R. (1999), "On the mechanics of structured sands", Geotechnique, 49(6), 741-760. https://doi.org/10.1680/geot.1999.49.6.741
  14. Dickson, T.H., Dwyer, D.F. and Humphrey, D.N. (2001), "Prototypes tire-shred embankment construction", Transportation research record 1755, TRB, National Reserach Council, Washington, D.C., USA, pp. 160-167.
  15. Edil, T. and Bosscher, P. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17(4), 453-464. https://doi.org/10.1520/GTJ10306J
  16. Edincliler, A., Cabalar, A.F., Cagaty, A. and Cevik, A. (2012), "Triaxial compression behavior of sand and tire wastes using neural networks", Neural. Comput. Appl., 21(3), 441-452. https://doi.org/10.1007/s00521-010-0430-4
  17. Gens, A. and Nova, R. (1993), "Conceptual bases for a constitutive model for model for bonded soils andweak rocks", In: Geotechnical Engineering of Hard Soils-Soft Rocks, (A. Anagnostopoulos, R. Frank, Ni. Kalteziotis and F. Schlosser Eds.), Balkema, Rotterdam, The Netherlands, pp. 485-494.
  18. Hamidi, A. and Hooresfand, M. (2013), "Effect of fiber reinforcement on triaxial shear behaviour of cement treated sand", Geotext. Geomembr., 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005
  19. Heymann, G., Clayton, C.R.I. and Reed, G.T. (1997), "Laser interferometry to evaluate the performanceof local displacement transducers", Geotechnique, 47(3), 399-405. https://doi.org/10.1680/geot.1997.47.3.399
  20. Huang, J.T. and Airey, D.W. (1998), "Properties of artificially cemented carbonate sand", J. Geotech. Geoenvir. Eng. Div., ASCE, 124(6), 492-499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)
  21. Humphrey, D. and Manion, W. (1992), "Properties of tire chips for lightweight fill", Grouting Soil Improv. Geosynth, 2, 1344-1355.
  22. Ismail, M.A., Joer, H.A. and Randolph, M.F. (2000), "Sample preparation technique for artificially cemented sands", Geotech. Test. J., ASTM., 23(1), 141-157. https://doi.org/10.1520/GTJ11039J
  23. Ismail, M.A., Joer, H.A., Randolph, M.F. and Meritt, A. (2002a), "Cementation of porous materials using calcite", Geotechnique, 52(5), 313-324. https://doi.org/10.1680/geot.52.5.313.38709
  24. Ismail, M.A., Joer, H.A., Sim, W.E. and Randolph, M.F. (2002b), "Effect of cement type on shear behaviour of cemented calcareous soil", J. Geotech. Geoenviron. Eng., 128(6), 520-529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  25. Jardine, R.J., Symes, M.J. and Burland, J.B. (1984), "The measurement of soil stiffness in the triaxial apparatus", Geotechnique, 34(3), 323-340. https://doi.org/10.1680/geot.1984.34.3.323
  26. Lee, J.H., Saigado, R., Bernal, A. and Lovell, C.W. (1999), "Shredded tires and rubber-sand as lightweight backfill", J Geotech Geoenviron Eng, 125, 132-141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
  27. Leroueil, S. and Vaughan, P.R. (1990), "The generaland congruent effects of structure in natural soils and weak rocks", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467
  28. Liu, M.D. and Carter, J.P. (1999), "Virgin compression of structured soils", Geotechnique, 49(1), 43-57. https://doi.org/10.1680/geot.1999.49.1.43
  29. Liu, M.D. and Carter, J.P. (2000), "Modelling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
  30. Maccarini, M. (1987), "Laboratory studies of weakly bonded artificial soil", Ph.D. Thesis, University of London, London, UK.
  31. Malandraki, V. (1994), "The engineering behaviour of a weakly bonded artificial soil", Ph.D. Thesis, University of Durham, Durham, UK.
  32. Malandraki, V. and Toll, D.G. (2001), "Triaxial tests on weakly bonded soil with changes in stress path", J. Geotech. Geoenviron. Eng., 127(3), 282-291. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(282)
  33. Masad, E., Taha, R., Ho, C. and Papagiannakis, T. (1996), "Engineering properties of tire/soil mixtures as a lightweight fill material", Geotech.Test. J., 19(3), 297-304. https://doi.org/10.1520/GTJ10355J
  34. Monkul, M.M. and Ozden, G. (2007), "Compressional behavior of clayey sand and transition fines content", Eng. Geol., 89(3-4), 195-205. https://doi.org/10.1016/j.enggeo.2006.10.001
  35. Moo-Young H., Sellasie, K., Zeroka, D. and Sabnis, G. (2003), "Physical and chemical properties of recycled tire shreds for use in construction", J. Geotech. Geoenviron. Eng., ASCE, 129(10), 921-929.
  36. Muszynski, M.R. and Stanley, J.V. (2012), "Particle shape estimates of uniform sands: visual and automated methods comparison", J. Mater. Civ. Eng., 24(2), 194-206. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000351
  37. Saxena, S.K. and Lastrico, R.M. (1978), "Static properties of lightly cemented sand", J. Geotech. Eng. Div., ASCE, 104(12), 1449-1464.
  38. Schnaid, F., Prietto, P.D. and Consoli, N.C. (2001), "Characterization of cemented sand in triaxial compression", J. Geotech. Geoenviron. Eng., ASCE, 127(10), 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
  39. Tatlisoz, N., Benson, C.H. and Edil, T. (1997), "Effect of fines on mechanical properties of soil-tire chip mixtures", In: Testing Soil Mixed with Waste or Recycled Materials, (Edited by M.A. Wasemiller and K.B. Hoddinott), ASTM International, pp. 93-108.
  40. Terzaghi, K. and Peck, R.B. (1962), Soil Mechanics in Engineering Practice, John Wiley & Sons Inc., (12th Edition), USA.
  41. Thevanayagam, S. (1998), "Effect of fines on confining stress on undrained shear strength of silty sands", J. Geotech. Geoenviron. Eng., ASCE, 124(6), 479-491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
  42. Tweedie, J.J., Humphrey, D.N. and Sandford, T.C. (1998), "Full scale field trials of tire shreds as lightweight retaining wall backfill, at-rest conditions", Transp. Res. Rec., 1619, 64-71. https://doi.org/10.3141/1619-08
  43. Vesic, AB. and Clough, G.W. (1968), "Behaviour of granular materials under high stresses", J. SMFE, ASCE, 94(8M-3), 661-688.
  44. Zornberg, J.G., Cabral, A.R. and Viratjandr, C. (2004), "Behaviour of tire shred-sand mixtures", Can. Geotech. J., 41(2), 227-241. https://doi.org/10.1139/t03-086

Cited by

  1. Effect of cyclic loading on the compressive strength of soil stabilized with bassanite–tire mixture vol.20, pp.1, 2018, https://doi.org/10.1007/s10163-017-0617-1
  2. Influence of crumb rubber on the geotechnical properties of clayey soil 2018, https://doi.org/10.1007/s10668-017-0005-y
  3. Experimental and numerical investigation of footing behaviour on multi-layered rubber-reinforced soil 2016, https://doi.org/10.1080/19648189.2016.1262288
  4. Application of waste rubber to reduce the settlement of road embankment vol.9, pp.2, 2015, https://doi.org/10.12989/gae.2015.9.2.219
  5. Seismic Resistance and Displacement Mechanism of the Concrete Footing vol.2019, pp.1875-9203, 2019, https://doi.org/10.1155/2019/5498505
  6. Mechanical properties of expanded polystyrene beads stabilized lightweight soil vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.459
  7. Free strain analysis of the performance of vertical drains for soft soil improvement vol.13, pp.6, 2017, https://doi.org/10.12989/gae.2017.13.6.963
  8. Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash vol.14, pp.6, 2015, https://doi.org/10.12989/gae.2018.14.6.533
  9. Effect of Stress Rotation and Intermediate Stress Ratio on Monotonic Behavior of Granulated Rubber-Sand Mixtures vol.32, pp.4, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0003054
  10. Strength and deformation behaviour of sand-rubber mixture vol.15, pp.9, 2015, https://doi.org/10.1080/19386362.2020.1812193