• Title/Summary/Keyword: geophysical investigation

Search Result 176, Processing Time 0.022 seconds

Subsurface Investigation of Dokdo Island using Geophysical Methods (물리탐사기법의 독도 지반조사 적용)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.335-342
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface, along with rock physical property measurements in Dokdo island. The survey results in Seodo island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction, and that Bedded Lapilli Tuff in the downstream was more severely influenced by weathering and erosion than Trachy Andesite II in the upstream of the survey area. In Dongdo island, Trachy Andesite III and Scoria Bedded Lapilli Tuff were severely weathered and eroded, considered as weathered to soft rock formations, and their weathered zone becomes thicker towards the antiaircraft facility in the NE direction of the survey area. The study results also illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Stratified Ash Tuff is the most soft rock in Dokdo island.

불국사 석탑의 지반 특성에 대한 지구물리탐사

  • Seo, Man-Cheol;O, Jin-Yong;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.143-151
    • /
    • 2002
  • Bulku temple in the city of Kyungju, Korea, built in 791 and reconstructed in the 20th century, is the home of seven national treasures including two three-story stone pagodas, Dabotap (height 10.4m, width 7.4m, weight 123.2ton) and Seokgatap (height 10.8m, width 4.4m, weight 82.3 ton). An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process which will threaten their stability. At the base part of Dabotap, an offset of the stone alignment is also observed. For the purpose of the structural safety diagnosis of two pagodas, we introduce the nondestructive geophysical methods. Site characteristics around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of GPR(ground-penetrating radar). Near the pagodas, the occurrence of high resistivity (up to 2200 Ωm) is obvious whereas their outskirts have as low as 200 Ωm. For the velocity of the P wave, the site of Dabotap has the range of 500~800 m/s which is higher than counterpart of Seokgatap with the velocity of 300~500m/s, indicating the solider stability of Dabotap site. Consequently, in addition to GPR images, the foundation boundaries beneath each stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ~4m, whereas the Seokgatap site the 9m × 10m rectangle with the depth of 3m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ~8 ton/㎡. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition.

  • PDF

Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey (2차원 전기비저항 탐사를 이용한 경주 개곡리 지역의 단층조사)

  • Lee, Chi-Seop;Kim, Hee-Joon;Kong, Young-Sae;Lee, Jung-Mo;Chang, Tae-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.124-132
    • /
    • 2001
  • Electrical resistivity survey has been conducted for delineating geological fault structure in Kaekok-ri near Kyungju. In general, electrical resistivity survey has an advantage of searching buried faults and its traces compared with other geophysical survey methods. Distribution of electrical conductivity in the ground is influenced by the ratio of pores, groundwater and clay minerals. These properties are evidenced indirectly to explain for weathering condition, faults and fracture Bones. Thus the electrical resistivity survey can be an effective method to find buried faults. We have carried out two dimensional (2-D) interpretation by means of smoothness-constrained least-squares and finite element method. Field data used in this paper was acquired at Kaekok-ri, Wuedong-eup, Kyungju-si, where is Ulsan Fault and is close to the region in which debatable quaternary fault traces were found recently. The dipole-dipole array resistivity survey which could show the 2-D subsurface electrical resistivity structure, was carried out in the area with three lines. The results showed good property of fault, fracture zone and fault traces which we estimated were congruous with the results. Through this study, 2-D electrical resistivity survey interpretation for fault is useful to apply.

  • PDF

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Investigation of Contaminated Waste Disposal Site Using Electrical Resistivity Imaging Technique (폐기물 처분장 오염지반조사를 위한 전기비저항 영상화 기법의 적용)

  • Jung Yunmoon;Woo Ik;Kim Jungho;Cho Seongjun
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The electrical resistivity method, one of old and widely used geophysical prospecting methods, has extended its scope to civil & environmental engineering areas. The electrical resistivity imaging technique was performed at the waste disposal site located in Junju to verify the applicability to the environmental engineering area. The dipole-dipole array, with the dipole spacing of 10 m, was applied along eight survey lines. The field data were obtained under the control of automatic acquisition softwares and topographic effects were corrected during processing stage. The processed resistivity images show that very low resistivity develops inside the disposal site and the distribution of low resistivity is exactly in accord with the boundary of the site except the river side. The depth of low resistivity zones is deeper toward the river side, which is interpreted that there is a high possibility for contaminants to be scattered to the river. From resistivity images, it was feasible to deduce the depth of waste disposal as well as the horizontal/vertical distribution of the contaminated zone, which proved the applicability of the electrical resistivity imaging technique to the environmental engineering area.

  • PDF

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

Application of HWAW Method to Detect Underground Anomaly in Shallow Depth (지표 근처 지중 이상체 파악을 위한 HWAW 기법의 적용)

  • Bang, Eun-Seok;Kim, Gyeong-Seob;Son, Jeong-Sul;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.11-20
    • /
    • 2009
  • A new alternative method based on HWAW method to detect underground anomaly was introduced. The location of underground anomaly can be estimated by using 2-dimensional image of phase velocity image with position and wavelength based on distortion phenomena of surface wave due to underground anomaly. Overall procedure of proposed method such as field testing, signal processing and interpretation of the result was introduced. Numerical verification study was performed by using various ground models containing underground anomaly. According to the condition of anomaly, the propagation and reflection characteristics of surface wave were different and this could be more easily shown in the image of phase velocity. Some rules of distortion phenomena were found and these become clues for estimating underground anomaly in interpreting real field data. Field verification tests were performed with conventional geophysical methods such as DC resistivity method and GPR. Though field condition is not homogeneous like numerical models, similar distortion phenomena were found in the testing results and estimated location of underground anomaly was agreed well with the results of another geophysical methods.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Investigation of ground condition charges due to cryogenic conditions in an underground LNG storage plant (지하 LNG 저장 시험장에서 극저온 환경에 의한 지반상태 변화의 규명)

  • Yi Myeong-Jong;Kim Jung-Ho;Park Sam-Gyu;Son Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To investigate the feasibility of a new concept of storing Liquefied Natural Gas (LNG) in a lined hard rock cavern, and to develop essential technologies for constructing underground LNG storage facilities, a small pilot plant storing liquid nitrogen (LN2) has been constructed at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The LN2 stored in the cavern will subject the host rock around the cavern to very low temperatures, which is expected to cause the development of an ice ring and the change of ground condition around the storage cavern. To investigate and monitor changes in ground conditions at this pilot plant site, geophysical, hydrogeological, and rock mechanical investigations were carried out. In particular, geophysical methods including borehole radar and three-dimensional (3D) resistivity surveys were used to identify and monitor the development of an ice ring, and other possible changes in ground conditions resulting from the very low temperature of LN2 in the storage tank. We acquired 3D resistivity data before and after storing the LN2, and the results were compared. From the 3D images obtained during the three phases of the resistivity monitoring survey, we delineated zones of distinct resistivity changes that are closely related to the storage of LN2. In these results, we observed a decrease in resistivity at the eastern part of the storage cavern. Comparing the hydrogeological data and Joint patterns around the storage cavern, we interpret this change in resistivity to result from changes in the groundwater flow pattern. Freezing of the host rock by the very low temperature of LN2 causes a drastic change in the hydrogeological conditions and groundwater flow patterns in this pilot plant.

Case Study of Ground Penetrating Radar for Subsurface Investigation (지하레이더 탐사법을 이용한 지반조사 사례 연구)

  • 문장수;김세환;남욱현;오영철
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.161-171
    • /
    • 1997
  • The exact information on geological structures and characteristics of the subsurface must be acquired to secure quality and safety of constructions. GPR technique, one of the most updated geophysical methods, is known for its applicability to shallow-depth underground surveys. The purpose of this study is to examine the usefulness of GPR method in constructions for detailed subsurface investigations, especially detecting the boundary between basement rock and its overburden. To find appropriate depths of the geological boundaries, it is necessary to obtain velocity of electromagnetic wave propagating into the ground. Wave velocity 0.096 m/ns estimated from velocity analysis using CMP gathers is used for depth conversion from time section. The depths of geological boundaries from GPR profiles are very well correlated with boring data. In addition, GPR survey has found some undulations of the geological boundaries due to weathering, which cannot be provided by conventional coring approaches.

  • PDF