DOI QR코드

DOI QR Code

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data

Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사

  • Sun, Changwan (Department of Geophysical Exploration, University of Science and Technology) ;
  • Takao, Kobayashi (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Kyeong Ja (Department of Geophysical Exploration, University of Science and Technology) ;
  • Choi, Young-Jun (Department of Astronomy and Space Science, University of Science and Technology)
  • 선창완 (과학기술연합대학원대학교, 물리탐사공학과) ;
  • 고바야시 타카오 (한국지질자원연구원) ;
  • 김경자 (과학기술연합대학원대학교, 물리탐사공학과) ;
  • 최영준 (과학기술연합대학원대학교, 천문우주과학과)
  • Received : 2017.05.04
  • Accepted : 2017.06.22
  • Published : 2017.06.30

Abstract

A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

미래 인류의 달 기지 설치 후보인 달 용암 동굴은 지형 카메라의 관측 자료를 통해 탐사가 수행되었지만 이는 달 용암 동굴의 존재에 대한 확실한 증거를 제시하지 못한다. 본 연구에서는 지표 투과가 가능한 High Frequency (HF) 레이더의 달 관측 자료를 이용하여 달 용암 동굴 탐사를 시도하였다. 이를 위해 일본 달 탐사선 Kaguya의 Lunar Radar Sounder (LRS)의 관측 자료에서 LRS에서 가장 강한 반사파 펄스가 나발생되는 지점까지의 거리인 LRS 표면 레인지가 추출되었다. 달 용암 동굴은 얕은 지하에 분포하고 LRS의 거리 분해능은 얕은 지하에 있는 목표물의 반사파와 표면 반사파는 분리 할 수 없다. 이로 인하여 달 얕은 지하에 구조물이 있는 경우 일반적인 달 표면의 위치가 실제 달 표면과 다르게 나타난다. 이에 따라 LRS 펄스의 낮은 거리 분해능을 이용하여 LRS 표면 레인지로부터 얕은 지하에 존재하는 달 용암 동굴 검출이 가능하다. LRS 표면 레인지에서 Kaguya의 궤도 고도를 제하면 달 표면 고도가 나타나고 이를 달 지형 고도를 나타내는 Kaguya Digital Terrain Model (DTM) 데이터로부터 도출된 DTM 평균 지형 고도와 비교 분석하여 달 용암 동굴을 검출한다. 이러한 분석 방법을 Rima Galilaei의 북쪽에 위치한 달 용암 동굴 후보지에 적용하여 LRS 지형 고도 값과 DTM 평균 지형 고도 값의 차이를 발견하였고 검출된 차이가 천부 지하에 존재하는 달 용암 동굴의 반사파로 인하여 생긴 것으로 추정하였다.

Keywords

References

  1. Lee, S. R., S. K. Kwon, K. J. Kim, S. C. Shin, S. G. Lee, and Kobayashi, T., 2011. Development of New Geological Technology for tracing Earth and Planetary Evolution, Korea Institute of Geoscience and Mineral Resources (KIGAM), GP2009-010-2011(3), p. 170.
  2. Arya, A. S., R. P. Rajasekhar, G. T. Ajai, and A. S. Kumar Kiran, 2011. Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data, Current Science, 100(4): 524-529.
  3. Chappaz L., R. Sood, H. J. Melosh, K. C. Howell, D. M. Blair, C. Milbury, and M. T. Zuber, 2017. Evidence of large empty lava tubes on the Moon using GRAIL gravity, Geophysical Research Letters, 44: 105-112. https://doi.org/10.1002/2016GL071588
  4. Coombs, C. R., and B. R. Hawke, 1992. A search for intact lava tubes on the moon: possible lunar habitats, 2nd Conference on lunar base and space activities of the 21st century, vol. 1, pp. 219-229.
  5. Greeley, R. and P. D. Spudis, 1986. Hadley Rille, lava tubes and mare volcanism at the Apollo 15 site, Workshop on the Geology and Petrology of the Apollo 15 Landing Site, Houston, Texas, Nov. 13-15, pp. 58-61.
  6. Haruyama, J., K. Hioki, M. Shirao, T. Morota, H. Hiesinger, Carolyn H. van der Bogert, H. Miyamoto, A. Iwasaki, Y. Yokota, M. Ohtake, T. Matsunaga, S. Hara, S. Nakanotani, and C. M. Pieters, 2009. Possible lunar lava tube skylight observed by SELENE cameras, Geophysical Research Letters, 36: L21206. https://doi.org/10.1029/2009GL040635
  7. Hong, I. S., Y. Yi, and E. J. Kim, 2014. Lunar pit crates presumed to be the Entrances of lava caves by analogy to the earth lava tube pits, Journal of Astronomy and Space Sciences, 31(2): 131-140. https://doi.org/10.5140/JASS.2014.31.2.131
  8. Hong, I. S., Y. Yi, J. H. Yu, and J. Haruyama, 2015. 3D modeling of Lacus Mortis pit crater with presumed interior tube structure, Journal of Astronomy and Space sciences, 32(2): 113-120. https://doi.org/10.5140/JASS.2015.32.2.113
  9. Jung, J. I., I. S. Hong, E. J. Cho, and Y. Yi, 2016. Method for indentifying lava tubes among pit craters using brightness profile across pits on the Moon or Mars, Journal of Astronomy and Space Sciences, 33(1), 21-28. https://doi.org/10.5140/JASS.2016.33.1.21
  10. Horz, F., 1985. Lava tubes: Potential shelters for habitats, Lunar bases and space activities of the 21st century, Houston, TX, Lunar and Planetary Institute, pp. 405-412.
  11. Hurwitz, Debra M., James W. Head, and H. Hiesinger, 2013. Lunar sinuous rilles: Distribution, characteristics, and implications, Planetary and Space Science, 79-80: 1-38. https://doi.org/10.1016/j.pss.2012.10.019
  12. Kato, M., S. Sasaki, Y. Takizawa, and the Kaguya project team, 2010. The Kaguya Mission Overview, 154(1): 3-19.
  13. Kobayashi, T., H. Oya, and T. Ono, 2002. A-scope analysis of subsurface radar sounding of lunar mare region, Earth Planets Space, 54(10): 973-982. https://doi.org/10.1186/BF03352445
  14. Kobayashi, T., S. R. Lee, J. H. Kim, and T. Ono, 2011. HF SAR image cross-correlation technique for high accuracy orbit positioning, Science China, 54(5): 978-985.
  15. Kobayashi T., J. H. Kim, S. R. Lee, A. Kumamoto, H. Nakagawa, S. Oshigami, H. Oya, Y. Yamaguchi, A. Yamaji, and T. Ono, 2012. Synthetic Aperture Radar Processing of Kaguya Lunar Radar Sounder Data for Lunar Subsurface Imaging, IEEE transactions on geoscience and remote sensing, 50(6): 2161-2174. https://doi.org/10.1109/TGRS.2011.2171349
  16. Murase, T. and A. R. McBirney, 1970. Viscosity of lunar lavas, Science, 167(3924): 1491-1493. https://doi.org/10.1126/science.167.3924.1491
  17. Ono, T. and H. Oya, 2000. Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planets Space, 52(9): 629-637. https://doi.org/10.1186/BF03351671
  18. Ono T., Kumamoto, A., Nagakawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., Kobayashi, T., Kasahara, Y., and Oya, H., 2009. Lunar Radar Sounder Observations of subsurface layers under the nearside maria on the Moon, Science, 323(5916): 909-912. https://doi.org/10.1126/science.1165988
  19. Ono, T., A. Kumamoto, Y. Kasahara, Y. Yamaguchi, A. Yamaji, T. Kobayashi, S. Oshigami, H. Nakagawa, Y. Goto, K. Hashimoto, Y. Omura, T. Imachi, H. Matsumoto, and H. Oya, 2010. The lunar radar sounder (LRS) onboard the Kaguya (SELENE) spacecraft, Space Science Review, 154(1): 145-192. https://doi.org/10.1007/s11214-010-9673-8
  20. Oshigami, S., Y. Yamaguchi, A. Yamaji, T. Ono, A. Kumamoto, T. Kobayashi, and H. Nakagawa, 2009. Distribution of the subsurface reflectors of the western nearside maria observed from Kaguya with Lunar Radar Sounder, Geophysical Research Letters, 36(18): L18202. https://doi.org/10.1029/2009GL039835
  21. Pommerol, A., W. Kofman, J. Audouard, C. Grima, C. Beck, J. Mouginot, A. Herique, A. Kumamoto, T. Kobayashi, and T. Ono, 2010. Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: influence of mineralogical composition, Geophysical Research Letters, 37(3): L03201. https://doi.org/10.1029/2009GL041681
  22. Saran, S., A. Das, and D. Pandey, 2016. Physical properties of lunar volcanic terrains using LRO data, 47th Lunar and planetary science conference, The Woodlands, Texas, Mar., 21-25, Abstract 2249.
  23. SELENE DATA ARCHIVE (http://l2db.selene.darts.isas.jaxa.jp/).
  24. Taflove, A., and S. C. Hagness, 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, Artech House, Boston, U. S. A.
  25. Wagner, R. V. and M. S. Robinson, 2014. Distribution, formation mechanisms, and significance of lunar pits, Icarus, 237: 52-60. https://doi.org/10.1016/j.icarus.2014.04.002
  26. Yee, K. S., 1966. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media, IEEE Transactions Antennas and Propagation, 14(8): 302-307. https://doi.org/10.1109/TAP.1966.1138693