• Title/Summary/Keyword: Lunar lava tube

Search Result 6, Processing Time 0.021 seconds

Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

  • Hong, Ik-Seon;Yi, Yu;Kim, Eojin
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Construction of the image database of Earth's lava caves useful in identifying the lunar caves

  • Hong, Ik-Seon;Jeong, Jongil;Sohn, Jongdae;Oh, Suyeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.138.2-138.2
    • /
    • 2012
  • Cave on the Moon is considered as the most appropriate place for human to live during the frontier lunar exploration. While the lava flows, the outer crust gets cooled and solidified. Then, the empty space is remained inside after lava flow stops. Such empty space is called the lava caves. Those lava tubes on the Earth are formed mostly by volcanic activity. However, the lava tubes on satellite like Moon and planet like Mars without volcanic activity are mostly formed by the lava flow inside of the crater made by large meteorite impact. Some part of lava tube with collapsed ceiling appears as the entrance of the cave. Such area looks like a deep crater so called a pit crater. Four large pit craters with diameter of > 60 m and depth of > 40 m are found without difficulty from Kaguya and LRO mission image archives. However, those are too deep to use as easily accessible human frontier base. Therefore, now we are going to identify some smaller lunar caves with accessible entrances using LRO camera images of 0.5 m/pixel resolution. Earth's lava caves and their entrances are well photographed by surface and aerial camera in immense volume. Thus, if the image data are sorted and archived well, those images can be used in comparison with the less distinct lunar cave and entrance images due to its smaller size. Then, we can identify the regions on the Moon where there exist caves with accessible entrances. The database will be also useful in modeling geomorphology for lunar and Martian caves for future artificial intelligence investigation of the caves in any size.

  • PDF

Method for Identifying Lava Tubes Among Pit Craters Using Brightness Profile Across Pits on the Moon or Mars

  • Jung, Jongil;Hong, Ik-Seon;Cho, Eunjin;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Caves can serve as major outposts for future human exploration of the Moon and Mars. In addition, caves can protect people and electronic equipment from external hazards such as cosmic ray radiation and meteorites impacts and serve as a shelter. Numerous pit craters have been discovered on the Moon and Mars and are potential entrances to caves; the principal topographic features of pit craters are their visible internal floors and pits with vertical walls. We have devised two topographical models for investigating the relationship between the topographical characteristics and the inner void of pit craters. One of our models is a concave floor void model and the other is a convex floor tube model. For each model, optical photographs have been obtained under conditions similar to those in which optical photographs have been acquired for craters on the Moon and Mars. Brightness profiles were analyzed for determining the profile patterns of the void pit craters. The profile patterns were compared to the brightness profiles of Martian pit craters, because no good-quality images of lunar pit craters were available. In future studies, the model profile patterns will be compared to those of lunar pit craters, and the proposed method will likely become useful for finding lunar caves and consequently for planning lunar bases for manned lunar expeditions.

3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

  • Hong, Ik-Seon;Yi, Yu;Yu, Jaehyung;Haruyama, Junichi
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

Basic Lunar Topography and Geology for Space Scientists (우주과학자에게 필요한 달의 지형과 지질)

  • Kim, Yong Ha;Choi, Sung Hi;Yu, Yongjae;Kim, Kyeong Ja
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.217-240
    • /
    • 2021
  • Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).