• Title/Summary/Keyword: geometry pattern

Search Result 357, Processing Time 0.03 seconds

Analysis of the Radiation Pattern of Conformal Array Transducers (곡면 배열 트랜스듀서의 방사 특성 해석)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.431-438
    • /
    • 2010
  • The radiation pattern of conformal transducers installed on a curved surface is likely to be complicated depending on the array pattern on the curved surface. In this research, the acoustic sources constituting a conformal transducer are arrayed in equi-angle, equi-interval, and geodesic dome forms, and the radiation pattern function of each of the array geometries has been derived, and therewith the radiation pattern has been analyzed for each array geometry. Based on the analysis result, we have determined the equi-interval array geometry that provides the widest beam width with the lowest side lobe level among the three array geometries. Results of the present work are expected to be utilized to the design of conformal transducer structures.

Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition (재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법)

  • Gizachew, Gocho Yirga;Jeong, Moon Hwan;Ko, Hyeong Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The computational cost of clothing simulation and rendering is mainly depends on the type of mesh and its quality. Thus, quadrilateral meshes are generally preferred over triangular meshes for the reasons of accuracy and efficiency. This paper presents a method of quadrangulating sewing pattern based on the recursive geometry decomposition method. Herein, we proposed two simple improvements to the previous algorithms. The first one deals with the recursive geometry decomposition in which the physical domain is decomposed into simple and mappable regions. The second proposed algorithm deals with the vertex validation in which the invalid vertex classification can be validated.

THE RELATIONSHIP BETWEEN PLOT GEOMETRY AND INPUTS REQUIRED FOR FARM MACHINE OPERATION IN KOREA

  • Singh, Gajendra;Ahn, Duck-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.139-147
    • /
    • 1993
  • The rapid industrial growth, the consequent shortage of farm labour and increase in their wage level have facilitated more capitalized agricultural mechanization pattern in Korea. The efficiency of capital intensive machine is highly dependent on farm land structure. This paper describes a model explaining the relationship between farmland structure and required inputs for machine operation and to estimate required inputs for machine operation on the national basis for Korea for its paddy production system. The machine cost is closely related to operation area, but the required labour-hours are more related to machine type adopted . From the technology introduction point of view, if capital intensive machine is introduced, less labour-hours are required but machine kW-hours increase rapidly. From the plot geometry point of view, on good geometry plots, machine kW-hour and labour-hour required are less than that on the poor geometry plots. The kW-jhour per hectare of mechani al energy input id better indicator of mechanization level than kW per hectare or number of machine. If the adopted technology is more capital intensive and plot geometry is good, the cost reduction effect is highly significant.

  • PDF

Investigation of Geoboards in Elementary Mathematics Education (초등수학에서 기하판 활용방안 탐색)

  • 김민경
    • Education of Primary School Mathematics
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 2001
  • Over the years, the benefits of instructional manipulatives in mathematics education have been verified by classroom practice and educational research. The purpose of this paper is to introduce how the instructional material, specifically, geoboard could be used and integrated in elementary mathematics classroom in order to develop student's mathematical concepts and process in terms of the following areas: (1) Number '||'&'||' Operation : counting, fraction '||'&'||' additio $n_traction/multiplication (2) Geometry : geometric concepts (3) Geometry : symmetry '||'&'||' motion (4) Measurement : area '||'&'||' perimeter (5) Probability '||'&'||' Statistics : table '||'&'||' graph (6) Pattern : finding patterns Further, future study will continue to foster how manipulatives will enhance children's mathematics knowledge and influence on their mathematics performance.

  • PDF

Design Principles of Fractal Geometry as Complex System (복잡계 구조로서 프랙탈 기하학의 조형원리)

  • Lim, Eun-Young
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2004.11a
    • /
    • pp.195-196
    • /
    • 2004
  • Fractal geometry based upon the latest complex theory shows different features of design pattern quite different from the past. It is not yet sure which kind of effects it would bring about in the future, we think that it would help to create various spaces and organic design vision. Therefore we will look into the significances and adaptabilities in space design by studying fractal design principles of today's new model in space design

  • PDF

Development of Fashion Product and 3D Pattern Textile Design through the Three-Dimensional Expression based on Jogakbo in Chosun Dynasty Period (조선시대 조각보의 입체적 표현을 통한 3D패턴 텍스타일 디자인과 패션상품 개발)

  • Heo, Seungyeun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • The purpose of this study is to develop 3D pattern textile design of traditional Jogakbo motifs and fashion products using it. As a research method, first, through literature review, the three-dimensional representation of geometry on a plane with Jogakbo, design cases were examined. Second, through a survey, the purchase perception and design preference of Jogakbo cultural products was analyzed. Third, based on the results of the survey on color and print, the 3D pattern design for each type of Jogakbo is printed, and then textile fashion cultural products were developed. The results of this study are as follows. First, the reason why the public was not attracted to the purchase of cultural products was disatisfaction with practicality, unsuitable preference, price adequacy, aesthetics, and originality. Therefore, it was analyzed that quality, practicality, price, carry-on storage harmony and manageability, as well as aesthetic design were important factors for consumers. Second, the stereoscopic space on the plane expanded the two-dimensional plane space by forming a cube through the division and dissolution of geometry could be visualized using color expression of cubes of different brightness depending on the direction of light. Third, Jogakbo had eight types consisting of four detailed forms and three arrangement methods. The 3D pattern design could be developed through regular disolution and stereoscopic construction using Jogakbo's representative images for each type. In addition, it was found that it was easy to produce Jogakbo fashion products suitable for modern people through 3D pattern digital textile printing applying traditional colors.

A Study of Pattern Generation Technique & Expressive Characteristics of Digital Ornament (디지털 오너먼트의 패턴생성기법 및 표현특성 연구)

  • Han, Hea-Shin;Kim, Moon-Duck
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.5
    • /
    • pp.83-94
    • /
    • 2010
  • Conventionally, ornament has developed around linear thinking based on Euclidean geometry, and been explained as simple and lucid natural Euclidean geometrical phenomena. The modular arrangement with vertical, horizontal and diagonal grids has been an organizing principle of classical ornament, but in digital era ornament is found not to be explained only with the principle of traditional arrangement due to the seemingly irregular complex forms. In that sense, this study presents the concept of digital ornament and examined the backgrounds of ornament in digital age, that are complex system and non-Euclidean geometry. Accordingly, the present study takes an approach by dividing new formal types of ornament into algorithmic form, hybrid form and dynamic form to find out a principle of pattern organization. Lately, architects who actively use computer for their architectural designs take the algorithmic strategies in nature and create various and complex patterns by simple rules. The patterns are not the repetition of the same, but the production of singularities. In addition, hybrid form by morphing shows a topologically flexible evolutionary transformation, and is used to create in-between transitional shapes from the source to target. Finally, the patterns by the interaction between the system components which are corresponded to the embedded forces emerge from dynamic simulation of the natural environment. Rather than objects itself, focus is given to the process of generating forms, and the ornamental patterns as the revelation of such implicit order provide not just the formal beauty but also spatial pathways for lights and air, maximizing the effects of lights.

Highly Tunable Block Copolymer Self-assembly for Nanopatterning

  • Jeong, Yeon-Sik;Jeong, Jae-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.1-6.1
    • /
    • 2011
  • Nanoscale block copolymer (BCP) patterns have been pursued for applications in sub-30 nm nanolithography. BCP self-assembly processing is scalable and low cost, and is well-suited for integration with existing semiconductor fabrication techniques. However, one of the major technical challenges for BCP self-assembly is limited tunability in pattern geometry, dimension, and functionality. We suggest methods for extending the degree of tunability by choosing highly incompatible polymer blocks and utilizing solvent vapor treatment techniques. Siloxane BCPs have been developed as self-assembling resists due to many advantages such as high etch-selectivity, good etch-resistance, long-range ordering, and reduced line-edge roughness. The large incompatibility leads to extensive degree of pattern tunability since the effective volume fraction can be easily manipulated by solvent-based treatment techniques. Thus, control of the microdomain size, periodicity, and morphology is possible by changing the vapor pressure and the mixing ratio of selective solvents. This allows a range of different pattern geometry such as dots, lines and holes and critical dimension simply by changing the processing conditions of a given block copolymer without changing a polymer chain length. We demonstrate highly extensive tunability (critical dimension ~6~30 nm) of self-assembled patterns prepared by a siloxane BCP with extreme incompatibility.

  • PDF