Analysis of the Radiation Pattern of Conformal Array Transducers

곡면 배열 트랜스듀서의 방사 특성 해석

  • Received : 2010.07.21
  • Accepted : 2010.09.06
  • Published : 2010.10.31

Abstract

The radiation pattern of conformal transducers installed on a curved surface is likely to be complicated depending on the array pattern on the curved surface. In this research, the acoustic sources constituting a conformal transducer are arrayed in equi-angle, equi-interval, and geodesic dome forms, and the radiation pattern function of each of the array geometries has been derived, and therewith the radiation pattern has been analyzed for each array geometry. Based on the analysis result, we have determined the equi-interval array geometry that provides the widest beam width with the lowest side lobe level among the three array geometries. Results of the present work are expected to be utilized to the design of conformal transducer structures.

곡면에 지지된 음원의 경우 음원의 배열 방식에 따라 방사되는 음장이 매우 복잡한 특성을 가진다. 본 연구에서는 곡면 배열 트랜스듀서를 구성하는 음원을 등각, 등간격 그리고 geodesic dome 형태로 배열하여, 각각의 배열 방식에 따른 음향 방사 패턴 함수를 유도하고, 그에 따라 방사 패턴을 해석하였다. 해석 결과를 바탕으로 3가지 배열 방법 가운데 상대적으로 주엽의 빔 폭이 크고 부엽의 크기가 작은 경향을 보이는 등간격 배열을 곡면 배열 트랜스듀서의 구조로 선정하였다. 본 연구 결과는 곡면 배열 트랜스듀서의 구조 설계에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Z. Y. He and Y. L. Ma, "Optimization of transmitting beam patterns of a conformal transducer array," Journal of the Acoustical Society of America, vol. 123, no. 5, pp. 2563-2569, 2008. https://doi.org/10.1121/1.2897046
  2. J. N. Decarpigny, "The Design of low-frequency underwater acoustic projectors; Present status and future trends," IEEE Journal of Oceanic Engineering, 16, pp. 107-122, 1991. https://doi.org/10.1109/48.64890
  3. G. H. Du, Z. M. Zhu, and X. F. Gong, Fundamentals of Acoustics, Nanjing University Press, Nanjing, 2001.
  4. J. Lee and I. Seo, "Radiation power estimation for sensor transducer arrays considering acoustic interaction," Sensors and Actuators A, A90, pp. 1-6, 2001.
  5. Z. Y. He and Y. L. Ma, "Sound field calculating of underwater acoustic projecting transducer array of arbitrary shape," Applied Acoustics, 25, pp. 69-75, 2006.
  6. C. Audoly, "Some aspects of acoustic interactions in sonar transducer arrays," Journal of the Acoustical Society of America, 89, pp. 1428-1433, 1991. https://doi.org/10.1121/1.400543
  7. D. L. Carson, "Diagnosis and cure of erratic velocity distribution in sonar projector arrays," Journal of the Acoustical Society of America, 34, pp. 1191-1195, 1962. https://doi.org/10.1121/1.1918297
  8. R. J. Bobber, "Diffraction constants of transducers," Journal of the Acoustical Society of America, 37, pp. 591-595, 1965. https://doi.org/10.1121/1.1909371
  9. Z. H. He and Y. L. Ma, "Calculation of baffle effect and mutual interaction between elements for an underwater acoustic conformal array with application to the optimization of projecting beam pattern," Chinese Science Bulletin, 52, pp. 2584-2591, 2007. https://doi.org/10.1007/s11434-007-0345-3
  10. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, New York, 2000.
  11. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New York, 2007.
  12. L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal Processing, CRC Press, Boca Raton, 2000.
  13. B. Tomasic, J. Turtle, and S. Liu, "Spherical arrays-design considerations," Proceedings of IEEE 18th International Conference on Applied Electro-magnetics and Communications, pp. 1-8, 2005.
  14. L. L. Beranek, Acoustics, McGraw-Hill Book Company, New York, 1954.
  15. B. Tomasic, J. Turtle, and P. Oleski, "The geodesic dome phased array antenna for satellite control and communication - subarray design, development and demonstration," Proceedings of IEEE International Symposium on Phased Array System and Technology, pp. 411-416, 2003.
  16. G. D. Ouderkirk, "Geodesic dome phased array radars," Proceedings of IEEE Radar Conference, pp. 431-436, 2007.