A Study on the Resonant Characteristics of a Tonpilz Transducer with a Fixed Tail Mass

후면추 고정형 Tonpilz 트랜스듀서의 공진 특성 연구

  • Received : 2010.08.09
  • Accepted : 2010.09.12
  • Published : 2010.10.31

Abstract

In this paper, the resonant characteristic of a Tonpilz transducer with a fixed tail mass has been researched and the feasibility to utilize the transducer in that resonant frequency has been analyzed. The additional resonance is occurred by adhering an elastic tube to the tail mass of a conventional Tonpilz transducer and fixing the other end of the tube. The characteristic of this low resonant mode is analyzed by means of the finite element method, then it is shown that this mode is affected by the variation of the stiffness of the tube as well as the mass of the head mass and tail mass. Based on the analysis results, the Tonpilz transducer is designed to meet specific performance conditions.

본 논문에서는 Tonpilz 트랜스듀서의 후면추를 고정시킴으로써 발생하는 저주파 공진 특성을 연구하여 Tonpilz 트랜스듀서의 다양한 공진모드에서의 이용 가능성을 분석하였다. 기존의 Tonpilz 트랜스듀서의 후면추에 탄성 튜브를 연결한 후 한쪽 끝을 고정 시킴으로써, 기존의 종 방향 공진 주파수 이하에서 추가적인 공진이 발생하도록 하였다. 이 저주파 공진모드는 후면추에 부착된 탄성체의 강성, Tonpilz 트랜스듀서의 전면추, 후면추의 질량 변화에 따라 그 특성이 변하게 된다. 이러한 추가적인 저주파 공진특성을 유한요소해석을 통해 분석하였으며, 그 결과를 바탕으로 특정 성능조건에 부합하는 Tonpilz 트랜스듀서의 설계가능성을 확인하였다.

Keywords

References

  1. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsulr Publishing, Los Altos, Chap. 2 and 6, 1988.
  2. M. V. Crombrugge and W. Thompson, Jr., "Optimization of the transmitting characteristics of a Tonpilz-type transducer by proper choice of impedance matching layers," J. Acoust. Soc. Am., vol. 77, no. 2, pp. 747-752, 1985. https://doi.org/10.1121/1.392344
  3. Y. R. Roh and X. Lu, "Design of an underwater Tonpilz transducer with 2-2 mode piezocomposite materials," J. Acoust. Soc. Am., vol. 119, no. 6, pp. 3734-3740, 2006. https://doi.org/10.1121/1.2197788
  4. D. L. Pei and Y. R. Roh, "Design of an underwater Tonpilz transducer with 1-3 piezocomposite materials," Jpn. J. Appl. Phy., vol. 47, no. 5, pp. 4003-4006, 2008. https://doi.org/10.1143/JJAP.47.4003
  5. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New york, Chap. 3 and 7, 2007.
  6. K. R. Dhilsha, G. Markandeyulu, B. V. P. Subrahmanyeswara Rao, and K. V. S. Rama Rao, "Design and fabrication of a low frequency giant magnetostrictive transducer," Journal of Alloys and Compounds, vol. 258, issues 1-2, pp. 53-55, 1997. https://doi.org/10.1016/S0925-8388(97)00063-7
  7. Q. Yao, and L. Bjorno, "Broadband Tonpilz underwater acoustic transducers based on multimode optimization," IEEE Trans. U.F.F.C., vol. 44, no. 5, pp. 1060-1066, 1997.
  8. D. W. Hawkins and P. T. Gough, "Multiresonance design of a Tonpilz transducer using the finite element method," IEEE Trans. U.F.F.C., vol. 43, no. 5, pp. 782-790, 1996. https://doi.org/10.1109/81.536748
  9. D. Rajapan, "Performance of a low-frequency, multiresonant broadband Tonpilz transducer," J. Acoust. Soc. Am., vol. 111, no. 4, pp. 1692-1694, 2002. https://doi.org/10.1121/1.1456927
  10. S. C. Butler, "Triply resonant broadband transducers," Oceans '02 MTS/IEEE, vol. 4, pp. 2334-2341, 2002.
  11. K. Saijyou and T. Okuyama, "Design optimization of wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface," J. Acoust. Soc. Am., vol. 127, no. 5, pp. 2836-2846, 2010. https://doi.org/10.1121/1.3377061
  12. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th ed., John Wiley and Sons, New york, 2000.