Analysis of the Radiation Pattern in Relation to the Head Mass Shape Applicable to a Tonpilz Transducer

Tonpilz 트랜스듀서에 적용 가능한 전면추 형상에 따른 방사 패턴 해석

  • Received : 2010.07.10
  • Accepted : 2010.09.09
  • Published : 2010.10.31

Abstract

The radiation property of a Tonpilz transducer is influenced by the structural variables of the transducer. In this study, with respect to a single mode Tonpilz transducer, the radiation patterns were calculated for different head mass geometries of the same effective radiation area. The shapes of the head mass analyzed were the most popular circular, regular triangular, square, regular hexagonal and regular octagonal types, and radiation pattern equations were derived for each of the head mass shapes. Based on the derived equations, radiation patterns in accordance with the shape and size of the head mass were calculated and the results were compared with each other. Validity of the calculation results were confirmed by means of finite element analysis.

Tonpilz 트랜스듀서의 방사 패턴은 구조 변수들에 의해 많은 영향을 받는다. 본 연구에서는 단일 모드 Tonpilz 트랜스듀서에 대해서 동일한 유효 면적을 가지는 다양한 전면추 형상에 따른 방사 패턴을 계산하였다. 트랜스듀서의 전면추 형상은 가장 많이 사용되는 원형과 정삼각형, 정사각형, 정육각형 및 정팔각형에 대해 분석하였으며, 각 형상에 대해 방사 패턴 수식을 유도하였다. 유도한 수식을 바탕으로 전면추 형상과 크기에 따른 방사 패턴의 변화를 해석하고, 서로의 특성을 비교하였다. 계산 결과의 타당성은 유한 요소 해석을 이용하여 확인하였다.

Keywords

References

  1. 강국진, 노용래, "유한요소법을 이용한 Tonpilz 트랜스듀서의 최적구조 설계," 한국음향학회지, 22권 8호, 637-644쪽, 2003.
  2. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsula Publishing Co.,Los Altos, 1988.
  3. H. A. Schneck, "Improved integral formulation for acoustic radiation problem," Journal of Acoustical Society of America, vol. 44, no. 1, pp. 41-58, 1968. https://doi.org/10.1121/1.1911085
  4. S. Kaneko, S. Nomoto, H. Yamamori, and K. Ohya, "Load characteristics of a bolted Langevin torsional transducer," Ultrasonics, 34, pp. 239-241, 1996. https://doi.org/10.1016/0041-624X(95)00072-B
  5. K. R. Dhilsha, G. Markandeyulu, B. V. P. S. Rao, and K. V. S. R.Rao, "Design and fabrication of a low frequency giant magnetostrictive transducer," Journal of Alloys and Compounds, 258, pp. 53-55, 1997. https://doi.org/10.1016/S0925-8388(97)00063-7
  6. D. W. Hawkins, and P. T. Gough, "Multiresonance design of a Tonpilz transducer using the finite element method," IEEE UFFC, vol. 43, no. 5, pp. 782-790, 1996. https://doi.org/10.1109/58.535479
  7. M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin, "Characterization of Terfenol-D for magnetostrictive transducers," Journal of Acoustical Society of America, vol. 89, no. 3, pp. 1448-1455, 1991. https://doi.org/10.1121/1.400678
  8. L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, New York, 2000.
  9. L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal Processing, CRC Press, Boca Raton, 2000.
  10. F. P. Mechel, Formulas of Acoustics, Springer, San Diego, 1998.
  11. P. R. Stepanishen, "Transient radiation from pistons in an infinite planar baffle," Journal of Acoustical Society of America, vol. 49, no. 5, pp. 1629-1638, 1971. https://doi.org/10.1121/1.1912541
  12. R. J. Freund and W. J. Wilson, Regression analysis: Statistical modeling of a response variable, Academic Press, San Diego, 1998.
  13. J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers." IEEE UFFC, 39, pp. 262-267, 1992. https://doi.org/10.1109/58.139123