DOI QR코드

DOI QR Code

Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition

재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법

  • Gizachew, Gocho Yirga (Seoul National University, Department of Electrical and Computer Engineering, Graphics and Media Lab.) ;
  • Jeong, Moon Hwan (Seoul National University, Department of Electrical and Computer Engineering, Graphics and Media Lab.) ;
  • Ko, Hyeong Seok (Seoul National University, Department of Electrical and Computer Engineering, Graphics and Media Lab.)
  • Received : 2015.11.26
  • Accepted : 2016.05.30
  • Published : 2016.06.01

Abstract

The computational cost of clothing simulation and rendering is mainly depends on the type of mesh and its quality. Thus, quadrilateral meshes are generally preferred over triangular meshes for the reasons of accuracy and efficiency. This paper presents a method of quadrangulating sewing pattern based on the recursive geometry decomposition method. Herein, we proposed two simple improvements to the previous algorithms. The first one deals with the recursive geometry decomposition in which the physical domain is decomposed into simple and mappable regions. The second proposed algorithm deals with the vertex validation in which the invalid vertex classification can be validated.

의상 시뮬레이션과 렌더링 계산 비용은 메쉬의 종류와 그 품질에 크게 좌우 된다. 일반적으로 정확도와 효율성 면에서 삼각메쉬 보다 사각메쉬가 더 선호된다. 본 논문은 재귀 기하 분할법에 기초한 의복 패턴의 사각화 방법을 기술한다. 논문에서는 기존의 방법에서 두 가지 개선점을 제안한다. 첫째, 제안 방법은 기존의 방법보다 향상 된 회귀 기하 분해 알고리즘을 사용한다. 제안된 방법에서 의복패턴의 물리적 도매인은 보다 더 간단하고 맵핑 가능한 형태로 분해된다. 둘째, 본 논문에서는 정점 분류 알고리즘의 유효성 확인작업을 수행한다. 제안 알고리즘을 이용하여 인식 되지 않은 정점 분류에 대한 유효성을 검증 할 수 있다.

Keywords

References

  1. J. A. Talbert and A. R. Parkinson, "Development of an automatic, two-dimensional finite element mesh generator using quadrilateral elements and bezier curve boundary definition," International Journal for Numerical Methods in Engineering, vol. 29, no. 7, pp. 1551-1567, 1990. https://doi.org/10.1002/nme.1620290712
  2. M. Whileley, D. While, S. Benzley, and T. Blacker, "Two and three-quarter dimensional meshing facilitators," Engineering with computers, vol. 12, no. 3-4, pp. 144-154, 1996. https://doi.org/10.1007/BF01198730
  3. E. Ruiz-Girones and J. Sanate, "Generation of structured meshes in multiply connected surfaces using submapping," Advances in Engineering Software, vol. 41 , no. 2, pp. 379-387, 2010. https://doi.org/10.1016/j.advengsoft.2009.06.009
  4. E. Catmull and J. Clark, "Recursively generated b-spline surfaces on arbitrary topological meshes," Computer-aided design, vol. 10, no. 6, pp. 350-355, 1978. https://doi.org/10.1016/0010-4485(78)90110-0
  5. W. Lin, Y. Tang, C. Zhao, X. Liu, G. Zhu, and F. Jiang, "An algorithm for automatic 2d finite element mesh generation with line constraints," Computer-Aided Design, vol. 43, no. 12, pp. 1803-1813, 2011. https://doi.org/10.1016/j.cad.2011.08.001
  6. B. P. Johnston, J. M. Sullivan, and A. Kwasnik, "Automatic conversion of triangular finite element meshes to quadrilateral elements," International Journal for Numerical Methods in Engineering, vol. 31 , no. 1, pp. 67-84, 1991. https://doi.org/10.1002/nme.1620310105
  7. C. K. Lee and S. Lo, "A new scheme for the generation of a graded quadrilateral mesh," Computers & structures, vol. 52, no. 5, pp. 847-857, 1994. https://doi.org/10.1016/0045-7949(94)90070-1
  8. H. Borouchaki and P. Frey, "Adaptive triangular-quadrilateral mesh generation," 1996.
  9. L. Velho, "Quadrilateral meshing using 4-8 clustering," Proc. CILANCE'00, pp. 6-8, 2000.
  10. S. J. Owen, M. L. Staten, S. A. Canann, and S. Saigal, "Q-morph: an indirect approach to advancing front quad meshing," International Journal for Numerical Methods in Engineering, vol. 44, no. 9, pp. 1317-1340, 1999. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1317::AID-NME532>3.0.CO;2-N
  11. K.-Y. Lee, I.-I. Kim, D.-Y. Cho, and T.-w. Kim, "An algorithm for automatic 2d quadrilateral mesh generation with line constraints," Computer-Aided Design, vol. 35, no. 12, pp. 1055-1068, 2003. https://doi.org/10.1016/S0010-4485(02)00145-8
  12. F. Kalberer, M. Nieser, and K. Polthier, "Quadcover-surface parameterization using branched coverings," in Computer Graphics Forum, vol. 26, no. 3, Wiley Online Library, 2007, pp. 375-384. https://doi.org/10.1111/j.1467-8659.2007.01060.x
  13. D. Bommes, H. Zimmer, and L. Kobbelt, "Mixed-integer quadrangulation," in ACM Transactions On Graphics (TOG), vol. 28, no. 3. ACM, 2009, p. 77. https://doi.org/10.1145/1531326.1531383
  14. D. Bommes, B. Levy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin, "Quad-mesh generation and processing: A survey," in Computer Graphics Forum, vol. 32, no. 6, Wiley Online Library, 2013, pp. 51-76. https://doi.org/10.1111/cgf.12014
  15. P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A. Yerry, "Robust, geometrically based, automatic two-dimensional mesh generation," International Journal for Numerical Methods in Engineering, vol. 24, no. 6, pp. 1043-1078, 1987. https://doi.org/10.1002/nme.1620240603
  16. D. Nowottny, "Quadrilateral mesh generation via geometrically optimized domain decomposition," in Proc. 6th Int. Meshing Roundtable. Citeseer, 1997, pp. 309-320.
  17. S.-W. Chae and J.-H. Jeong, "Unstructured surface meshing using operators," in Proceedings, 6th International Meshing Roundtable, 1997, pp. 281-291.
  18. B. Joe, "Quadrilateral mesh generation in polygonal regions," Computer-Aided Design, vol. 27, no. 3, pp. 209-222, 1995. https://doi.org/10.1016/0010-4485(95)95870-K
  19. T. Tam and C. G. Armstrong, "2d finite element mesh generation by medial axis subdivision," Advances in engineering software and workstations, vol. 13, no. 5, pp. 313-324, 1991. https://doi.org/10.1016/0961-3552(91)90035-3
  20. T. D. Blacker and M. B. Stephenson, "Paving: A new approach to automated quadrilateral mesh generation," International Journal for Numerical Methods in Engineering, vol. 32, no. 4, pp. 811-847, 1991. https://doi.org/10.1002/nme.1620320410
  21. D. R. White and P. Kinney, "Redesign of the paving algorithm: Robustness enhancements through element by element meshing," in 6th International Meshing Roundtable, 1997, pp. 323-335.
  22. S. A. Mitchell, "High fidelity interval assignment," Internation Journal of Computational Geometry & Applications, vol. 10, no. 04, pp. 399-415, 2000. https://doi.org/10.1142/S0218195900000231
  23. C. Araujo and W. Celes, "Quadrilateral mesh generation with deferred constraint insertion," Procedia Engineering, vol. 82, pp. 88-100, 2014. https://doi.org/10.1016/j.proeng.2014.10.375
  24. R. J. Cass, S. E. Benzley, R. J. Meyers, and T. D. Blacker, "Generalized 3-d paving: an automated quadrilateral surface mesh generation algorithm," International Journal for Numerical Methods in Engineering, vol. 39, no. 9, pp. 1475-1489, 1996. https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1475::AID-NME913>3.0.CO;2-W
  25. Y. Li, W. Wang, R. Ling, and C. Tu, "Shape optimization of quad mesh elements," Computers & Graphics, vol. 35, no. 3, pp. 444-451, 2011. https://doi.org/10.1016/j.cag.2011.03.037
  26. A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, 1998.
  27. J. Zhu, O. Zienkiewicz, E. Hinton, and J. Wu, "A new approach to the development of automatic quadrilateral mesh generation," International Journal for Numerical Methods in Engineering, vol. 32, no. 4, pp. 849-866, 1991. https://doi.org/10.1002/nme.1620320411
  28. L. F. Richardson, Weather prediclion by numerical process, Cambridge University Press, 2007.
  29. J. F. Shepherd and C. R. Johnson, "Hexahedral mesh generation constraints," Engineering with Computers, vol. 24, no. 3, pp. 195-213, 2008. https://doi.org/10.1007/s00366-008-0091-4
  30. S. Lo, "A new mesh generation schcme for arbitrary planar domains," International Journal for Numerical Methods in Engineering, vol. 21, no. 8, pp. 1403-1426, 1985. https://doi.org/10.1002/nme.1620210805
  31. Y. Liu, H. Xing, and Z. Guan, "An indirect approach ror automatic generation of quadrilateral meshes with arbitrary line constraints," International Journal for Numerical Methods in Engineering, vol. 87, no. 9, pp. 906-922, 2011. https://doi.org/10.1002/nme.3145
  32. R. Lohner, K. Morgan, J. Peraire, and O. Zienkiewicz, Finite element methods for high speed flows. University College of Swansea Institute for Numerical? Methods in Engineering, 1985.
  33. T. J. Baker, "Three dimensional mesh generation by triangulation of arbitrary point sets," AIAA paper, vol. 1124, p. 1987, 1987.
  34. N. Weatherill, "A method for generating irregular computational grids in multiply connected planar domains," International Journal for Numerical Methods in Fluids, vol. 8, no. 2, pp. 181-197, 1988. https://doi.org/10.1002/fld.1650080206
  35. P.-L. George, F. Hecht, and E. Saltel, "Constraint of the boundary and automatic mesh generation," in Proc. 2nd Int. Conf. on Numer. Grid Generation in Comp. Fluid Mechanics, 1988.
  36. D. HOLMES and D. SNYDER, "The generation of unstructured triangular meshes using delaunay triangulation((applications to hypersonic inlets))," Numerical grid generation in computational fluid mechanics'88, pp. 643-652, 1988.
  37. M. A. Yerry and M. S. Shephard, "Automatic three-dimensional mesh generation by the modified-octree technique," International Journal for Numerical Methods in Engineering, vol. 20, no. 11, pp. 1965-1990, 1984. https://doi.org/10.1002/nme.1620201103
  38. M. S. Shephard and M. K. Georges, "Automatic tluee-dimensional mesh generation by the finite octree technique," International Journal for Numerical methods in engineering, vol. 32, no. 4, pp. 709-749, 1991. https://doi.org/10.1002/nme.1620320406
  39. T. J. Baker, "Mesh generation: Art or science?" Progress in Aerospace Sciences, vol. 41, no. 1, pp. 29-63, 2005. https://doi.org/10.1016/j.paerosci.2005.02.002