• Title/Summary/Keyword: geometry parameters

Search Result 1,117, Processing Time 0.028 seconds

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT

  • Addou, Farouk Yahia;Meradjah, Mustapha;Bousahla, Abdelmoumen Anis;Benachour, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.347-367
    • /
    • 2019
  • This work investigates the effect of Winkler/Pasternak/Kerr foundation and porosity on dynamic behavior of FG plates using a simple quasi-3D hyperbolic theory. Four different patterns of porosity variations are considered in this study. The used quasi-3D hyperbolic theory is simple and easy to apply because it considers only four-unknown variables to determine the four coupled vibration responses (axial-shear-flexion-stretching). A detailed parametric study is established to evaluate the influences of gradient index, porosity parameter, stiffness of foundation parameters, mode numbers, and geometry on the natural frequencies of imperfect FG plates.

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate (금속 기판에 화학증기증착법으로 성장된 그래핀의 광학적 반사 대비율)

  • Lee, Chang-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.114-119
    • /
    • 2021
  • A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.

Development of a Lightweight Prediction Model of Fuel Injection Rates from High Pressure Fuel Injectors (고압 인젝터의 분사율 예측을 위한 경량 모델 개발)

  • Lee, Sanggwon;Bae, Gyuhan;Atac, Omer Faruk;Moon, Seoksu;Kang, Jinsuk
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.188-195
    • /
    • 2020
  • To meet stringent emission regulations of automotive engines, fuel injection control techniques have advanced based on reliable and fast computing prediction models. This study aims to develop a reliable lightweight prediction model of fuel injection rates using a small number of input parameters and based on simple fluid dynamic theories. The prediction model uses the geometry of the injector nozzle, needle motion data, injection conditions and the fuel properties. A commercial diesel injector and US No. 2 diesel were used as the test injector and fuel, respectively. The needle motion data were measured using X-ray phase-contrast imaging technique under various fuel injection pressures and injection pulse durations. The actual injector rate profiles were measured using an injection rate meter for the validation of the model prediction results. In the case of long injection durations with the steady-state operation, the model prediction results showed over 99 % consistency with the measurement results. However, in the case of short injection cases with the transient operation, the prediction model overestimated the injection rate that needs to be further improved.

Vertical load on a conduit buried under a sloping ground

  • Khan, Muhammad U.A.;Shukla, Sanjay K.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-610
    • /
    • 2021
  • Conduits are commonly installed below the ground for utility conveyance around the world. Vertical load on a buried conduit is an important parameter that needs to be known to ensure its safe design and installation. Consideration of soil arching in load calculations helps achieve a more realistic and efficient design. In the past, considering the arching effect, the design charts have been presented for use by practicing engineers to calculate the vertical load on the conduit buried below the level ground. There are currently no design charts for calculating the vertical load on the conduit buried under a sloping ground. In this paper, an attempt has been made to present the derivation of a generalized analytical expression considering that the soil mass overlying the conduit has a sloping face and the arching phenomenon takes place. The developed generalized expression has been used to present some design charts considering specific values of slope geometry, soil properties and burial depths. Furthermore, analytical results for specific soil parameters have been compared with the results extracted from a commercial software PLAXIS 2D, for a developed numerical model and an independent study.

Corrosion Inhibition Studies on Low Carbon Steel in Hydrochloric Acid Medium Using o-Vanillin-Glutamine Schiff Base

  • Thusnavis, G. Rexin;Archana, T.V.;Palanisamy, P.
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The o-Vanillin - Glutamine Schiff base [2-Hydroxy-3-Methoxy BenzylidineCarbomyl) -2-Butanoic Acid] was examined for low carbon steel corrosion inhibition in acid media. Weight loss studies were carried out at three different temperatures to determine the inhibition efficiency (IE). Electrochemical impedance spectroscopy revealed that the charge transfer resistance controlled the corrosion reaction and Tafel polarization indicated that the Schiff base acts as mixed mode of inhibitor. SEM images were recorded for the surface morphology of the low carbon steel surface. DFT studies revealed corrosion control mechanisms using quantum chemical parameters such as EHOMO, ELUMO, energy gap (∆E), chemical Hardness (η), chemical Softness (σ), Electronegativity (χ), and the fraction of electron transferred (∆N), which is calculated using Gaussian software 09. The gas-phase geometry was fully optimized in the Density Functional Theory (DFT/B3LYP-6-31G (d)).The DFT results are in good agreement with the experimental results. All the results proved that the Schiff Base (2-Hydroxy-3-Metoxy BenzylidineCarbomyl) -2-Butanoic is a suitable alternative for corrosion inhibition of low carbon steel in acid media.

Investigating dynamic response of porous advanced composite plates resting on Winkler/Pasternak/Kerr foundations using a new quasi-3D HSDT

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Yeghnem, Redha;Guerroudj, Hicham Zakaria;Kaci, Abdelhakim;Tounsi, Abdelouahed;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.771-788
    • /
    • 2022
  • This research investigates the free vibration of porous advanced composite plates resting on Winkler/Pasternak/ Kerr foundations by using a new hyperbolic quasi three dimensional (quasi-3D) shear deformation theory. The present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by parabolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate. In this work, we consider imperfect FG plates with porosities embedded within elastic Winkler, Pasternak or Kerr foundations. Implementing an analytical approach, the obtained governing equations from Hamilton's principle according to FG plates are derived. The closed form solutions are obtained by using Navier technique, and natural frequencies of FG plates are found, for simply supported plates, by solving the results of eigenvalue problems. A comprehensive parametric study is presented to evaluate effects of the geometry of material, mode numbers, porosity volume fraction, Power-law index and stiffness of foundations parameters on free vibration characteristics of FG plates.

Analysis of key elements of single-layer dome structures against progressive collapse

  • Zhang, Qian;Huang, Wenxing;Xu, Yixiang;Cai, Jianguo;Wang, Fang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.257-264
    • /
    • 2022
  • The analysis of the progressive collapse resistance of structures is a well-known issue among structural engineers. Large-span reticulated dome structures are commonly utilized in large public buildings, necessitating research into their progressive collapse resistance to assure user safety. The most significant part of improving the structural resilience of reticulated domes is to evaluate their key elements. Based on a stiffness-based evaluation approach, this work offers a calculating procedure for element importance coefficient. For both original and damaged structures, evaluations are carried out using the global stiffness matrix and the determinant. The Kiewitt, Schwedler, and Sunflower reticulated domes are investigated to explore the distribution characteristic of element importance coefficients in the single-layer dome structures. Moreover, the influences of the load levels, load distributions, geometric parameters and topological features are also discussed. The results can be regarded as the initial concept design reference for single-layer reticulated domes.

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng;Gao, Yanan;Moradi, Zohre;Ali, Yasar Ameer;Khadimallah, Mohamed Amine
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.371-388
    • /
    • 2022
  • The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.

Analysing NOx and soot formations of an annular chamber with various types of biofuels

  • Joanne Zi Fen, Lim;Nurul Musfirah, Mazlan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.537-551
    • /
    • 2022
  • The rapid decrease of fossil fuel resources and increase of environmental pollution caused by aviation industries have become a severe issue which leads to an increase in the greenhouse effect. The use of biofuel becomes an option to alleviate issues related to unrenewable resources. This study presents a computational simulation of the biofuel combustion characteristics of various alternative fuels in an annular combustion chamber designed for training aircraft. The biofuels used in this study are Sorghum Oil Methyl Ester (SOME), Spirulina Platensis Algae (SPA) and Camelina Hydrotreated Esters and Fatty Acids (CHEFA). Meanwhile, Jet-A is used as a baseline fuel. The fuel properties and combustion characteristics are being investigated and analysed. The results are presented in terms of temperature and pressure profiles in addition to the formation of NOx and soot generated from the combustion chamber. Results obtained show that CHEFA fuel is the most recommended biofuel among all four tested fuels as it is being found that it burns with 37.6% lower temperature, 15.2% lower pressure, 89.5% lower NOx emission and 8.1% lower soot emission compared with the baseline fuel in same combustion chamber geometry with same initial parameters.