DOI QR코드

DOI QR Code

Analysing NOx and soot formations of an annular chamber with various types of biofuels

  • Joanne Zi Fen, Lim (School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Nurul Musfirah, Mazlan (School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia)
  • Received : 2022.08.28
  • Accepted : 2022.11.21
  • Published : 2022.11.25

Abstract

The rapid decrease of fossil fuel resources and increase of environmental pollution caused by aviation industries have become a severe issue which leads to an increase in the greenhouse effect. The use of biofuel becomes an option to alleviate issues related to unrenewable resources. This study presents a computational simulation of the biofuel combustion characteristics of various alternative fuels in an annular combustion chamber designed for training aircraft. The biofuels used in this study are Sorghum Oil Methyl Ester (SOME), Spirulina Platensis Algae (SPA) and Camelina Hydrotreated Esters and Fatty Acids (CHEFA). Meanwhile, Jet-A is used as a baseline fuel. The fuel properties and combustion characteristics are being investigated and analysed. The results are presented in terms of temperature and pressure profiles in addition to the formation of NOx and soot generated from the combustion chamber. Results obtained show that CHEFA fuel is the most recommended biofuel among all four tested fuels as it is being found that it burns with 37.6% lower temperature, 15.2% lower pressure, 89.5% lower NOx emission and 8.1% lower soot emission compared with the baseline fuel in same combustion chamber geometry with same initial parameters.

Keywords

Acknowledgement

The authors would like to acknowledge Ministry of Higher Education Malaysia, grant number FRGS/1/2019/TK07/USM/03/5 and Graduate Fellowship USM (GFUSM) for the financial support.

References

  1. Baharozu, E., Soykan, G. and Ozerdem, M.B. (2017), "Future aircraft concept in terms of energy efficiency and environmental factors", Energy, 140, 1368-1377. https://doi.org/10.1016/j.energy.2017.09.007.
  2. Bartonova, L. (2015), "Unburned carbon from coal combustion ash: An overview", Fuel Pr. Technol., 134, 136-158. https://doi.org/10.1016/j.fuproc.2015.01.028.
  3. Bhardwaj, A.K., Zenone, T. and Chen, J. (2017), Sustainable Biofuels, De Gruyter, Berlin, Boston.
  4. Bockhorn, H. (2013), Soot Formation in Combustion: Mechanisms and Models, Springer Science & Business Media.
  5. Cataluna, R. and Da Silva, R. (2012), "Effect of cetane number on specific fuel consumption and particulate matter and unburned hydrocarbon emissions from diesel engines", J. Combus., 2012, Article ID 738940. https://doi.org/10.1155/2012/738940.
  6. Cernan, J., Hocko, M. and Cuttova, M. (2017), "Safety risks of biofuel utilization in aircraft operations", Transp. Res. Procedia, 28, 141-148. https://doi.org/10.1016/j.trpro.2017.12.179.
  7. Cheng, X., Jv, H. and Wu, Y. (2008), "Application of a phenomenological soot model for diesel engine combustion", Internal Combustion Engine Division Spring Technical Conference, 48132, 205-214.
  8. Circiu, I., Rotaru, C., Luculescu, D. and Constantinescu, C. (2015), "Aircraft engine combustion chamber performances-numerical evaluation", Appl. Mech. Mater., 811, 167-171. https://doi.org/10.4028/www.scientific.net/AMM.811.167
  9. Coogan, S., Brun, K. and Teraji, D. (2014), "Micromix combustor for high temperature hybrid gas turbine concentrated solar power systems", Energy Procedia, 49, 1298-1307. https://doi.org/10.1016/j.egypro.2014.03.139.
  10. Da Silva, N.D.L., Batistella, C.B., Maciel Filho, R. and Maciel, M.R.W. (2011), "Investigation of biofuels properties", Chem. Eng., 25, 85. https://doi.org/10.3969/j.issn.1002-1124.2011.02.020
  11. Debnath, C., Bandyopadhyay, T.K., Bhunia, B., Mishra, U., Narayanasamy, S. and Muthuraj, M. (2021), "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production", Renew. Sustain. Energy Rev., 150, 111464. https://doi.org/10.1016/j.rser.2021.111464.
  12. Dhamale, N., Parthasarathy, R.N. and Gollahalli, S.R. (2011), "Effects of turbulence on the combustion properties of partially premixed flames of canola methyl ester and diesel blends", J. Combus., 2011, Article ID 697805. https://doi.org/10.1155/2011/697805.
  13. Filla, R. (2012), "Representative testing of emissions and fuel consumption of working machines in reality and simulation", Proceedings of the SAE 2012 Commercial Vehicle Engineering Congress, Rosemont, IL, USA.
  14. Fluent, A. (2015), "Ansys fluent", Academic Research, Release, 14,
  15. Funke, H.W., Dickhoff, J., Keinz, J., Ayed, A.H., Parente, A. and Hendrick, P. (2014), "Experimental and numerical study of the micro mix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine", Appl. Energy Procedia, 61, 1736-1739. https://doi.org/10.1016/j.egypro.2014.12.201.
  16. Gawron, B. and Bialecki, T. (2018), "Impact of a Jet A-1/HEFA blend on the performance and emission characteristics of a miniature turbojet engine", Int. J. Environ. Sci. Technol., 15(7), 1501-1508. https://doi.org/10.1007/s13762-017-1528-3.
  17. Gawron, B., Bialecki, T., Janicka, A. and Suchocki, T. (2020), "Combustion and emissions characteristics of the turbine engine fueled with HEFA blends from different feedstocks", Energi., 13(5), 1277. https://doi.org/10.1007/s13762-017-1528-3.
  18. Godbole, V., Pal, M.K. and Gautam, P. (2021), "A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production", Algal Res., 58, 102436. https://doi.org/10.1016/j.algal.2021.102436.
  19. Hari, T.K., Yaakob, Z. and Binitha, N.N. (2015), "Aviation biofuel from renewable resources: routes, opportunities and challenges", Renew. Sustain. Energy Rev., 42, 1234-1244. https://doi.org/10.1016/j.rser.2014.10.095.
  20. Hileman, J., Katz, J.B., Mantilla, J.G. and Fleming, G. (2008), "Payload fuel energy efficiency as a metric for aviation environmental performance", International Congress of Aeronautical Sciences, September.
  21. Hui, X., Kumar, K., Sung, C.J., Edwards, T. and Gardner, D. (2012), "Experimental studies on the combustion characteristics of alternative jet fuels", Fuel, 98, 176-182. https://doi.org/10.1016/j.fuel.2012.03.040.
  22. Klapmeyer, M.E. and Marr, L.C. (2012), "CO2, NO x, and particle emissions from aircraft and support activities at a regional airport", Environ. Sci. Technol., 46(20), 10974-10981. https://doi.org/10.1021/es302346x.
  23. Kumar, K. (2017), Biofuels Can Reduce Aircraft Particle Emissions And Contrails: NASA Study, Tech Times.
  24. Kumar, R. and Ramakrishna, P.A. (2014), "Measurement of regression rate in hybrid rocket using combustion chamber pressure", Acta Astronautica, 103, 226-234. https://doi.org/10.1016/j.actaastro.2014.06.044.
  25. Magnussen, B.F. (2005), "The eddy dissipation concept: A bridge between science and technology", ECCOMAS Thematic Conference on Computational Combustion, Libson, Portugal.
  26. Mark, C. P. and A. Selwyn (2016), "Design and analysis of annular combustion chamber of a low bypass turbofan engine in a jet trainer aircraft", Propuls. Power Res., 5(2), 97-107. https://doi.org/10.1016/j.jppr.2016.04.001.
  27. Mat Aron, N.S., Khoo, K.S., Chew, K.W., Show, P.L., Chen, W.H. and Nguyen, T.H.P. (2020), "Sustainability of the four generations of biofuels-A review", Int. J. Energy Res., 44(12), 9266-9282. https://doi.org/10.1002/er.5557.
  28. Meloni, R. (2013), "pollutant emission validation of a heavy-duty gas turbine burner by CFD modeling", Mach., 1(3), 81-97. https://doi.org/10.3390/machines1030081.
  29. Merker, G.P., Schwarz, C., Stiesch, G. and Otto, F. (2005), Simulating Combustion: Simulation of Combustion and Pollutant Formation for Engine-Development, Springer Science & Business Media.
  30. Mohammadi, B. and Pironneau, O. (1993), Analysis of the k-Epsilon Turbulence Model, Paris.
  31. Moore, R.H., Thornhill, K.L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim, J., ... & Anderson, B.E. (2017), "Biofuel blending reduces particle emissions from aircraft engines at cruise conditions", Nature, 543(7645), 411. https://doi.org/10.1038/nature21420.
  32. Mostafa, S.S. and El-Gendy, N.S. (2017), "Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel", Arab. J. Chem., 10, S2040-S2050. https://doi.org/10.1016/j.arabjc.2013.07.034.
  33. Nieslony, P., Grzesik, W., Chudy, R. and Habrat, W. (2015), "Meshing strategies in FEM simulation of the machining process", Arch. Civil Mech. Eng., 15(1), 62-70. https://doi.org/10.1016/j.acme.2014.03.009.
  34. Rodrigo, C.L., Manoel, F.N. and Danielle, R.G. (2017), "CFD modeling of a small-scale cyclonic combustor chamber using biomass powder", Energy Procedia, 120, 556-563. https://doi.org/10.1016/j.egypro.2017.07.208.
  35. Rodrigues, L.O., Alencar, H.S., Nascimento, M.A. and Venturini, O.J. (2007), "Aerodynamic analysis using CFD for gas turbine combustion chamber", ASME 2007 Power Conference, American Society of Mechanical Engineers, 42738, 547-557.
  36. Sabnis, P. and Aggarwal, S.K. (2018), "A numerical study of NOx and soot emissions in methane/n-heptane triple flames", Renew. Energy, 126, 844-854. https://doi.org/10.1016/j.renene.2018.04.007.
  37. Sapp, M. (2017), "Airbus offering customers aircraft delivery using 10% aviation biofuel blend", BiofuelsDigest.
  38. Shokravi, H., Shokravi, Z., Heidarrezaei, M., Ong, H.C., Koloor, S.S.R., Petru, M., ... & Ismail, A.F. (2021), "Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions", Chemosph., 285, 131535. https://doi.org/10.1016/j.chemosphere.2021.131535.
  39. Singh, J. and Gu, S. (2010), "Commercialization potential of microalgae for biofuels production", Renew. Sustain. Energy Rev., 14(9), 2596-2610. https://doi.org/10.1016/j.rser.2010.06.014.
  40. Singh, P., S. K. Tiwari, et al. (2017), "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review", Renew. Sustain. Energy Rev., 79, 1016-1033. https://doi.org/10.1016/j.rser.2017.05.116.
  41. Slade, R. and Bauen, A. (2013), "Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects", Biomass Bioenergy, 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019.
  42. Ved, K. and Padam, K. (2013), "Study of physical and chemical properties of biodiesel from sorghum oil", Res. J. Chem. Sci., 3(9), 64-68
  43. Vennam, L.P., Vizuete, W., Talgo, K., Omary, M., Binkowski, F.S., Xing, J., ... & Arunachalam, S. (2017), "Modeled full-flight aircraft emissions impacts on air quality and their sensitivity to grid resolution", J. Geophys. Res.: Atmosph., 122(24). https://doi.org/10.1002/2017jd026598.
  44. Wang, W.C., Tao, L. et al. (2016), "Review of biojet fuel conversion technologies", NREL National Renewable Energy Laboratory, Golden.
  45. Wang, Y. and Chung, S.H. (2019), "Soot formation in laminar counterflow flames", Progr. Energy Combus. Sci., 74, 152-238. https://doi.org/10.1016/j.pecs.2019.05.003.
  46. Watanabe, H., Yamamoto, J.I. and Okazaki, K. (2011), "NOx formation and reduction mechanisms in staged O2/CO2 combustion", Combus. Flame, 158(7), 1255-1263. https://doi.org/10.1016/j.combustflame.2010.11.006.
  47. Won, J., Baek, S.W., Kim, H. and Lee, H. (2019), "The viscosity and combustion characteristics of single-droplet water-diesel emulsion", Energi., 12(10), 1963. https://doi.org/10.3390/en12101963.
  48. Yi, T.H., Turangan, C., Lou, J., Wolanski, P. and Kindracki, J. (2009), "A three-dimensional numerical study of rotational detonation in an annular chamber", 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January.
  49. Zhang, H. and Chen, W. (2015), "The role of biofuels in China's transport sector in carbon mitigation scenarios", Energy Procedia, 75, 2700-2705. https://doi.org/10.1016/j.egypro.2015.07.682.
  50. Zhang, M., Zhenbo, F.U., Yuzhen, L. and Jibao, L. (2012), "CFD study of NOx emissions in a model commercial aircraft engine combustor", Chin. J. Aeronaut., 25(6), 854-863. https://doi.org/10.1016/s1000-9361(11)60455-x.
  51. Zuber, M., Hisham, M.S.B., Nasir, N.A.M., Basri, A.A. and Khader, S.M.A. (2017), "A computational fluid dynamics study of combustion and emission performance in an annular combustor of a jet engine", Pertanika J. Sci. Technol., 25(3), 1019-1028