DOI QR코드

DOI QR Code

Corrosion Inhibition Studies on Low Carbon Steel in Hydrochloric Acid Medium Using o-Vanillin-Glutamine Schiff Base

  • Thusnavis, G. Rexin (Department of Chemistry, Pioneer Kumaraswamy College) ;
  • Archana, T.V. (Department of Chemistry, Pioneer Kumaraswamy College) ;
  • Palanisamy, P. (Department of Chemistry, Pioneer Kumaraswamy College)
  • Received : 2021.08.12
  • Accepted : 2021.10.21
  • Published : 2022.02.28

Abstract

The o-Vanillin - Glutamine Schiff base [2-Hydroxy-3-Methoxy BenzylidineCarbomyl) -2-Butanoic Acid] was examined for low carbon steel corrosion inhibition in acid media. Weight loss studies were carried out at three different temperatures to determine the inhibition efficiency (IE). Electrochemical impedance spectroscopy revealed that the charge transfer resistance controlled the corrosion reaction and Tafel polarization indicated that the Schiff base acts as mixed mode of inhibitor. SEM images were recorded for the surface morphology of the low carbon steel surface. DFT studies revealed corrosion control mechanisms using quantum chemical parameters such as EHOMO, ELUMO, energy gap (∆E), chemical Hardness (η), chemical Softness (σ), Electronegativity (χ), and the fraction of electron transferred (∆N), which is calculated using Gaussian software 09. The gas-phase geometry was fully optimized in the Density Functional Theory (DFT/B3LYP-6-31G (d)).The DFT results are in good agreement with the experimental results. All the results proved that the Schiff Base (2-Hydroxy-3-Metoxy BenzylidineCarbomyl) -2-Butanoic is a suitable alternative for corrosion inhibition of low carbon steel in acid media.

Keywords

Acknowledgement

The authors sincerely thank the Department of Chemistry, Sree Ramakrishna Mission Vidyalaya College of Arts & Science, Periyanaickenpalayam, Coimbatore, for permitting us to make use of the laboratory facilities. The authors are grateful to Dr.R.Subramanian, Department of Chemistry, Manonmaniam Sundaranar University College, Govindaperi for providing computational support.

References

  1. R. Salghi, S. Jodeh, E. E. Ebenso, H. Lgaz, D. Ben Hmamou, I. H. Ali, N. Benchat, 6-phenylpyridazin-3(2H)one as New Corrosion Inhibitor for C38 Steel in 1 M HCl. International Journal of Electrochemical Science, 12, 3309 (2017). Doi: https://doi.org/10.20964/2017.04.45
  2. M. Lagrene, B. Mernari, M. Bouanis, M. Traisnel, F. Bentiss, Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acid medium, Corrosion Science, 44, 573 (2002). Doi: https://doi.org/10.1016/S0010-938X(01)00075-0
  3. P. Udhayakala, A. Jayanthi, T. V. Rajendiran, Adsorption and Quantum Chemical Studies on the Inhibition potentials of some Formazan Derivatives, Der Pharma Chemica, 3, 528 (2011). https://www.derpharmachemica.com/pharma-chemica/adsorption-and-quantum-chemical-studies-on-the-inhibition-potentials-of-some-formazan-derivatives.pdf
  4. A. M. Abdel-Gaber, M. S. Masoud, E. A. Khalil, E. E. Shehata, Electrochemical study on the effect of Schiff base and its cobalt complex on the acid corrosion of steel, Corrosion Science, 51, 3021 (2009). Doi: https://doi.org/10.1016/j.corsci.2009.08.025
  5. I. Ahamad, R. Prasad, M. A.Quraishi, Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions, Corrosion Science, 52, 933 (2010). Doi: https://doi.org/10.1016/j.corsci.2009.11.016
  6. M. Behpour, S. M. Ghoreishi, M. Salavati-Niasari, B. Ebrahimi, Evaluating two new synthesized S-N Schiff bases on the corrosion of copper in 15% hydrochloric acid Materials Chemistry and Physics, 107, 153 (2008). Doi: https://doi.org/10.1016/j.matchemphys.2007.06.068
  7. M. K. Awad, Semiempirical investigation of the inhibition efficiency of thiourea derivatives as corrosion inhibitors, Journal of Electroanalytical Chemistry, 567, 219 (2004). Doi: https://doi.org/10.1016/j.jelechem.2003.12.028
  8. G. Bereket, C. Ogretir, A. Yurt, Quantum mechanical calculations on some 4-methyl-5-substituted imidazole derivatives as acidic corrosion inhibitor for zinc, Journal of Molecular Structure (THEOCHEM), 571, 139 (2001). Doi: https://doi.org/10.1016/S0166-1280(01)00552-8
  9. F. Bentiss, M. Lebrini, M. Lagrenee, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/ 2, 5-bis (n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system, Corrosion Science, 47, 2915 (2005). Doi: https://doi.org/10.1016/j.corsci.2005.05.034
  10. J. Fang, and J. Li, Quantum Chemistry Study on the Relationship between Molecular Structure and Corrosion Inhibition Efficiency of Amides, Journal of Molecular Structure, THEOCHEM, 593, 179 (2002). Doi: https://doi.org/10.1016/S0166-1280(02)00316-0
  11. A. O. James, N. C. Oforka, O. K. Abiola, Inhibition of Acid Corrosion of Mild Steel by Pyridoxal and Pyridoxol Hydrochlorides, International Journal of Electrochemical Science, 2, 278 (2007). http://www.electrochemsci.org/papers/vol2/2030278.pdf
  12. Wei-hua Li, Qiao He, Sheng-tao Zhang, Chang-ling Pei, Bao-rongHou, Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium, Journal of Applied Electrochemistry, 38, 289 (2008). Doi: https://doi.org/10.1007/s10800-007-9437-7
  13. T. A. Carlson, C. W. Nestor. Jr, N. Wasserman, J. D. Mcdowell, Calculated ionization potentials for multiply charged ions, Atomic Data and Nuclear Data Tables, 2, 63 (1970). Doi: https://doi.org/10.1016/S0092-640X(70)80005-5
  14. I. B. Obot, N. O. Obi-Egbedi, Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors, Corrosion Science, 52, 657 (2010). Doi: https://doi.org/10.1016/j.corsci.2009.10.017
  15. P. Udhayakala, T. V. Rajendiran, S. Gunasekaran, Theoretical evaluation on the efficiencies of some Flavonoids as corrosion inhibitors on Copper, Journal of Chemical, Biological and Physical Sciences A, 2, 1151 (2012).
  16. R. G. Pearson, Chemical Hardness and Bond Dissociation Energies, Journal of the American Chemical Society, 110, 7684 (1988). Doi: https://doi.org/10.1021/ja00231a017
  17. R. G. Parr, L. V. Szentpaly, S. Liu, Electrophilicity Index, Journal of the American Chemical Society, 121, 1922 (1999). Doi: https://doi.org/10.1021/ja983494x
  18. M. Ozcan, R. Solmaz, G. Kardas, I. Dehri, Adsorption properties of barbiturates as green corrosion inhibitors on mild steel in phosphoric acid, Colloids and Surface A: Physicochemical and Engineering Aspects, 325, 57 (2008). Doi: https://doi.org/10.1016/j.colsurfa.2008.04.031
  19. H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid, Applied Surface Science, 239, 154 (2005). Doi: https://doi.org/10.1016/j.apsusc.2004.05.143
  20. R. A. Prabhu, T. V. Venkatesha, A. V. Shanbhag, Carmine and Fast Green as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, Journal of the Iranian Chemical Society, 6, 353 (2009). Doi: https://doi.org/10.1007/BF03245845
  21. P. Udhayakala, T. V. Rajendiran, S. Gunasekaranal, Density Functional Theory Investigations for the adsorption of some Oxadiazole Derivatives on Mild Steel, Journal of Advanced Scientific Research, 3, 67 (2012). http://www.sciensage.info/jasr/current_issue_publish.php?p=280
  22. I. B. Obot, N. O. Obi-Egbedi, Fluconazole as an inhibitor for aluminum corrosion in 0.1 M HCl, Physicochemical and Engineering Aspects, 330, 207 (2008). Doi: https://doi.org/10.1016/j.colsurfa.2008.07.058
  23. I. B. Obot, N. O. Obi-Egbedi, S. A. Umoren, Adsorption Characteristics and Corrosion Inhibitive Properties of Clotrimazole for Aluminium Corrosion in Hydrochloric Acid, International Journal of Electrochemical Science, 4, 863 (2009). http://www.electrochemsci.org/papers/vol4/4060863.pdf
  24. X. Li, S. Deng, H. Fu, T. Li, Adsorption, and inhibition effect of 6-benzylaminopurine on cold-rolled steel in 1.0 M HCl, Electrochimica Acta, 54, 4089 (2009). Doi: https://doi:10.1016/j.electacta.2009.02.084
  25. N. O. Obi-Egbedi, I. B. Obot, M. I. El-Khaiary, S. A. Umoren, E. E. Ebenso, Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface, International Journal of Electrochemical Science, 6, 5649 (2011). http://www.electrochemsci.org/papers/vol6/6115649.pdf
  26. E. E. Ebenso, D. A. Isabirye, N. O. Eddy, Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium, International Journal of Molecular Sciences, 11, 2473 (2010). Doi: https://doi.org/10.3390/ijms11062473
  27. I. Lukovits, E. Kalman and F. Zucchi, Corrosion Inhibitors - Correlation between Electronic Structure and Efficiency, Corrosion, 57, 3 (2001). Doi: http://dx.doi.org/10.5006/1.3290328