References
- Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. B Eng., 39, 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi-3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
- Ahmed, R.A., Al-Maliki, A.F.H. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.
- Ait Atmane H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mat. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x.
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Stuct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B: Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Al Khateeb, S.A. and Zenkour, A.M. (2014), "A refined fourunknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment", Compos. Struct., 111, 240-248. https://doi.org/10.1016/j.compstruct.2013.12.033.
- Allahkarami, F., Tohidi, H., Dimitri, R. and Tornabene, F. (2020), "Dynamic stability of bi-directional functionally graded porous cylindrical shells embedded in an elastic foundation", Appl. Sci., 10(4), 1345. https://doi.org/10.3390/app10041345.
- Ansari, I. Md, Kumar, A., Barnat-Hunek, D. Suchorab, Z. and Kwiatkowski, B. (2019), "Investigation of porosity effect on flexural analysis of doubly curved FGM conoids", Sci. Eng. Compos. Mater., 26(1), 435-448. https://doi.org/10.1515/secm2019-0026.
- Arshid, H., Khorasani, M., Soleimani-Javid, Z., Dimitri, R. and Tornabene, F. (2020), "Quasi-3D hyperbolic shear deformation theory for the free vibration study of honeycomb microplates with graphene nanoplatelets-reinforced epoxy skins", Molecul., 25(21), 5085. https://doi.org/10.3390/molecules25215085.
- Baferani, A.H., Saidi, A.R and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93, 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
- Baferani, A.H., Saidi, A.R and Jomehzadeh, E. (2011), "An exact solution for free vibration of thin functionally graded rectangular plates", Proc. Inst. Mech. Eng. Part C 225, 526-536. https://doi.org/10.1243/09544062JMES21.
- Bamdad, M., Mohammedimehr, M. and Alambeigi, K. (2020), "Buckling and bending analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/scs.2020.36.6.671.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
- Benahmed, A., Houari, S.M.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi- 3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundations", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Bensaid, I., Cheikh, A., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater. Res., 6(1), 13-26. https://doi.org/10.12989/amr.2017.6.1.013.
- Bensattalah, T., Zidour, M., Tounsi, A. and Adda Bedia, E.A. (2016), "Investigation on thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos. Mater., 52(4), 1-14. https://doi.org/10.1007/s11029-016-9606-z.
- Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda Bedia, E.A. (2015), "Post-buckling analysis of nanobeams using trigonometric shear deformation theory", Appl. Sci. Report., 10(2), 112-121. https://doi.org/10.15192/PSCP.ASR.2015.10.2.112121.
- Chen, C.S., Chen, T.J. and Chien, R.D. (2006), "Nonlinear vibration of initially stressed functionally graded plates", Thin Wall. Struct., 44(8), 844-851. https://doi.org/10.1016/j.tws.2006.08.007.
- Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1249. https://doi.org/10.22055/JACM.2020.33136.2166.
- Daikh, A.A. Houari, M.S.A. and Tounsi, A. (2019), "Buckling of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Exp., 1, 15-22.
- Dastjerdi, S., Malikan, M., Dimitri, R. and Tornabene, F. (2021), "Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment", Compos. Struct., 255, 112925. https://doi.org/10.1016/j.compstruct.2020.112925.
- Doan, T.L., Le, P.B., Tran, T.T., Trai, V.K. and Pham, Q.H. (2021), "Free vibration analysis of functionally graded porous nanoplates with different shapes resting on elastic foundation", J. Appl. Comput. Mech., 7(3), 1593-1605. https://doi.org/10.22055/JACM.2021.36181.2807.
- Ebrahimi, F. and Seyfi, A. (2020), "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Eng. Comput., 38, 379-395. https://doi.org/10.1007/s00366-020-01069-w.
- Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.
- Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
- Feldman, E. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38, 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X.
- Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020), "Strain gradient basic static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
- Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
- Gupta, A. and Talha, M. (2018), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stab. Dyn., 38(1), 1-31. https://doi.org/10.1142/S021945541850013X.
- Hassaine Daouadji, T. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Hosseini-Hashemi, Sh., Fadaee, M., Rokni Damavandi Taher, H. (2011), "Exact solutions for free flexural vibration of Levy-type rectangular thick plates via third-order shear deformation plate theory", Appl. Math. Model., 35, 708-727. https://doi.org/10.1016/j.apm.2010.07.028.
- Javaheri, R. and Eslami, M. (2002), "Buckling of functionally graded plates under in-plane compressive loading", J. Appl. Math. Mech., 82, 277-283. https://doi.org/10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO;2-Y.
- Jha, D.K., Kant, T. and Singh, T.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.
- Jin, G., Su, Z., Shi, S., Ye, T. and Gao, S. (2014), "Threedimensional exact solution for the free vibration of arbitrarily thick functionally graded plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.
- Kar, V.R. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Kar, V.R. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661.
- Kar, V.R. and Panda, S.K. (2013), "Free vibration responses of functionally graded spherical shell panels using finite element method", ASME 2013 Gas Turbine India Conference, December.
- Kar, V.R. and Panda, S.K. (2014), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", Vib. Control, 22(7), 1935-1945. https://doi.org/10.1177/1077546314545102.
- Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Kar, V.R. and Panda, S.K. (2015b), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
- Kar, V.R. and Panda, S.K. (2015c), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Solid. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691.
- Kar, V.R. and Panda, S.K. (2015d), "Effect of temperature on stability behaviour of functionally graded spherical panel", IOP Conf. Ser.: Mater. Sci. Eng., 75(1), 012014. https://doi.org/10.1088/1757-899X/75/1/012014
- Kar, V.R. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Therm. Stress., 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623.
- Kar, V.R. and Panda, S.K. (2016b), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
- Kar, V.R. and Panda, S.K. (2016c), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.
- Kar, V.R. and Panda, S.K. (2016d), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperaturedependent and temperature-independent properties", J. Press. Ves. Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.
- Kar, V.R. and Panda, S.K. (2017a), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
- Kar, V.R. and Panda, S.K. (2017b), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160(15), 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", J. Mater. Des. Appl., 223(2), 53-62. https://doi.org/10.1243/14644207JMDA189.
- Karami, B., Jangorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Karami, B., Jangorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191.
- Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01553-x.
- Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2020), "Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput., 38, 2313-2339. https://doi.org/10.1007/s00366-020-01208-3.
- Khazaei, P. and Mohammedimehr, M. (2020), "Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory", Struct. Eng. Mech., 76(1), 27-56. https://doi.org/10.12989/sem.2020.76.1.027.
- Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R. and Tornabene, F. (2021), "Three-dimensional buckling analysis of functionally graded saturated porous rectangular plates under combined loading conditions", Appl. Sci., 11(21), 10434. https://doi.org/10.3390/app112110434.
- Kneifati, M.C. (1985), "Analysis of Plates on a Kerr foundation model", J. Eng. Mech., 111(11), 1325-1342. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1325).
- Koizumi, M. (1993), "The concept of FGM", Ceram. Trans,, 34, 3-10.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part. B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Li, J.F., Takagi, K., Ono, M., Pan, M., Watanabe, R., Almajid, A. and Taya, M. (2003), "Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators", J. Am. Ceram. Soc., 86, 1094-1098. https://doi.org/10.1111/j.1151-2916.2003.tb03430.x.
- Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62. https://doi.org/10.12989/scs.2020.36.1.47.
- Lu, C., Lim, C.W. and Chen, (2009), "Exact solutions for free vibrations of functionally graded thick plates on elastic foundations", Mech. Adv. Mat. Struct., 16, 576-584. https://doi.org/10.1080/15376490903138888.
- Madenci, E. (2021), "Free vibration analysis of carbone nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
- Madenci, E. and Ozkili, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
- Mahdavian, M. (2009), "Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform inplane compressive loading", J. Solid. Mech., 1, 213-225.
- Mantari, J.L. (2015), "A refined theory with stretching effect for the dynamic analysis of advanced composites on elastic foundation", Mech. Mater., 86, 31-43. https://doi.org/10.1016/j.mechmat.2015.02.010.
- Mantari, J.L. (2015), "Refined and generalized hybrid type quasi3D shear deformation theory for the bending analysis of functionally graded shells", Compos. B. Eng., 83, 142-152. https://doi.org/10.1016/j.compositesb.2015.08.048.
- Mantari, J.L. and Granados, E.V. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", Compos. Struct., 132, 952-959. https://doi.org/10.1016/j.compstruct.2015.06.035.
- Mantari, J.L., Granados, E.V., Hinostroza, M. and Soares, C.G. (2014), "Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT", Compos. Struct., 118, 455-471. https://doi.org/10.1016/j.compstruct.2014.07.039.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new Higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B., 43, 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017.
- Mehar, K., Panda, S.K., Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
- Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215.
- Menaa, R., Tounsi, A., Mouaci, F., Mechab, I., Zidi, M. and Adda Bedia, E.A. (2012), "Analytical solutions for static shear correction factor for beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409.
- Merdaci, S., Mostefa Adda, H., Belghoul, H., Dimitri, R. and Tornabene, F. (2021), "Higher-order free vibration analysis of porous functionally graded plates", J. Compos. Sci., 5(11), 305. https://doi.org/10.3390/jcs5110305.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badvana, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, London.
- Mohammedi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17, 81-93. https://doi.org/10.1007/s10443-009-9100-z.
- Mohammedimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.
- Naveen Kumar, H.S. and Kattimani, S. (2022a), "Effect of different geometrical non-uniformities on nonlinear vibration of porous functionally graded skew plates: A finite element study", Defence Tech., 18(6), 918-936. https://doi.org/10.1016/j.dt.2021.05.002.
- Naveen Kumar, H.S. and Kattimani, S. (2022b), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
- Naveen Kumar, H.S., Kattimani, S. and Nguyen-Thoi, T., (2021), "Influence of porosity distribution on non-linear free vibration and transient responses of porous functionally graded skew plates", Defence Tech., 17(6), 1918-1935. https://doi.org/10.1016/j.dt.2021.02.003.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., Mota Soares, C.M. and Araujo, A.L. (2017), "Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories", Mech. Adv. Mater. Struct., 24(5), 360-376. https://doi.org/10.1080/15376494.2016.1191095.
- Nguyen, P.C., Pham, Q.H., Tran, T.T. and Nguyen-Thoi, T. (2022), "Effects of partially supported elastic foundation on free vibration of FGP plates using ES-MITC3 elements", Ain Shams Eng. J., 13(3), 101615. https://doi.org/10.1016/j.asej.2021.10.010.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (2002), Energy Pprinciples and Variational Methods in Applied Mechanics, John Wiley & Sons.
- Sahmani, S., Fettahi, A.M. and Amed, N.A. (2020), "Analytical treatment on the local strain gradient vibrational response of postbuckled functionally graded porous micro- nanoplates reinforced with GPL", Eng. Comput., 36, 1559-1578. https://doi.org/10.1007/s00366-019-00782-5.
- Shahraki, H, Riahi, H.T., Izadinia, M. and Talaeitaba, S.B. (2019), "Buckling and vibration analysis of FG-CNT-reinforced composite rectangular thick nanoplates resting on Kerr foundation based on nonlocal strain gradient theory", J. Vib. Control, 26(5-6), 277-305. https://doi.org/10.1177/1077546319878976.
- Shahsavari, D, Shahsavari, M, Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016.
- Tornabene, F., Viscoti, M. and Dimitri, R. (2022), "Generalized higher order layerwise theory for the dynamic study of anisotropic doubly-curved shells with a mapped geometry", Eng. Anal. Bound. Elem., 134, 147-183. https://doi.org/10.1016/j.enganabound.2021.09.017.
- Tornabene, F., Viscoti, M., Dimitri, R. and Aiello, M.A. (2021), "Higher order formulations for doubly-curved shell structures with a honeycomb core", Thin Wall. Struct., 164, 107789. https://doi.org/10.1016/j.tws.2021.107789.
- Tornabene, F., Viscoti, M., Dimitri, R. and Reddy, J.N. (2021), "Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry", Compos. Struct., 267, 113829. https://doi.org/10.1016/j.compstruct.2021.113829.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci, 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Wang, Y., Tham, L. and Cheung, Y. (2005), "Beams and plates on elastic foundations, A review", Prog. Struct. Eng. Mater., 7, 174-182. https://doi.org/10.1002/pse.202.
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
- Wattanasakulpong, N. (2012), "Free vibration analysis of functionally graded beams with general elastically end constraints by DTM", World J. Mech., 2(6), 297-310. https://doi.org/10.4236/wjm.2012.26036.
- Xu, T.F. and Xing, Y.F. (2016), "Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation", Acta Mechanica Sinica, 32(6), 1088-1103. https://doi.org/10.1007/s10409-016-0600-4.
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2039. https://doi.org/10.1007/s11012-013-9720-0.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44, 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
- Zhou, D., Cheung, Y.K., Au, F.T.K. and Lo, S.H. (2002), "Threedimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method", Int. J. Solid. Stuct., 39, 6339-6353. https://doi.org/10.1016/S0020-7683(02)00460-2.
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68, 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.