• Title/Summary/Keyword: geological structures

Search Result 382, Processing Time 0.033 seconds

Structural control, and Correlation of Uranium Distribution and Mineralogy of Meta-pelites in Ogcheon Terrain, Korea (한반도(韓半島) 옥천대(沃川帶)에 분포(分布)하는 함(含)우라늄층(層)의 지질구조규제(地質構造規制) 및 조성광물(組成鑛物)과 우라늄분포(分布)와의 상관관계연구(相關關係硏究))

  • Park, Bong-Soon;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.215-227
    • /
    • 1980
  • The rock units of Goesan area in the Ogcheon metamor phic terrain established on the basis of field criteria should be redefined into following sequence. Based on shear senses in secondary small structures which are usually observable in the investigated area, the stratigraphy can be lithologically divided into the lower pelite, pebbly mudstone, upper pelite, quartzite and psammite unit in ascending order. This conclusion is in discordance with a previous opinion; Munjuri formation and Guryongsan formation may be equivalent to upper pelite unit, Iwonri formation and Hwanggangri formation to pebbly mudstone. From this, it may be inferred that isoclinal overturned folds repeatly occur in the area. The uranium bearing coaly thin layers in upper pelite unit have relatively broad exposures in Deogpyeongri block of Goesan area along culmination zone in the central part of the investigated area. It is believed that structural feature in the block recognized complexly refolded synform plunging to southwest. Mineralogical and radiometric studies were made on 135 representative samples from the Ogcheon Group of Korea. The mineralogy of all black slate samples is qualitatively similar but quantitatively ·different. The uranium distribution in the studied area show approximately log normal. Uranium in the black slates of the Ogcheon Group was deposited together under same physico-chemical environmental conditions. The chemical and geological factors that controlled the abundance of organic carbon and iron oxides also controlled the uranium content. The relationship of the major components to uranium can be expressed by the following regression equation: $Log(U\times10^4+1)$= 1.70999-0.00367(quartz)0.00512(micas)-0.00930 (other silicates)+0.01911 (iron oxides)-0.03389(other opaques)+0.02062(organic carbon).

  • PDF

Petro-mineralogical and Mechanical Property of Fault Material in Phyllitic Rock Tunnel (천매암 터널 단층물질의 암석.광물학적 및 역학적 특성)

  • Lee, Kyoung-Mi;Lee, Sung-Ho;Seo, Yong-Seok;Kim, Chang-Yong;Kim, Kwang-Yoem
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.339-350
    • /
    • 2007
  • Content, swelling, concentration, drainage of clay are critical factors that could control rock failures as well as discontinuous geological structures like faults and joints. Especially, the proportional components of clay minerals can be one of few direct indicators to a rock failure caused well by rainfall. Criticality of the role of clay mineral contents gets bigger in the slope and tunnel design. This study, using a horizontal boring core of pelitic/psammitic phyllite from the OO tunnel construction site, aims to investigate mineral composition changes related to fault distribution and their mechanical effects to the activity of these discontinuous layers (i.e., clay-filled fault layers), and eventually to define correlation among rock compositions, weathering products and rock instabilities. Field survey and lab tests were carried out for the composition and strength index of fault clay minerals within the core samples and microscopic analysis of fresh and weathered rock samples.

Current Status and Perspectives of Korean Geophysics (우리나라 지구물리학의 현황과 미래 전망)

  • Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.1-14
    • /
    • 2007
  • This paper briefly reviews the history of the Korean geophysics and analyze the current status of geophysical researches. And the future prospects of geophysics are discussed based on social demands for the science and technology in Korea. About thirty universities offer geophysics courses in their academic curricula. Although the number of Ph.D. graduates in geophysics had been small until the year of 1990, but is rapidly increasing. In recent years about $7{\sim}8$ Ph.D's are produced every year. The major geophysical methods used in Ph.D. theses are seismic, electrical and electromagnetic methods, and earthquake waves and research themes are computational geophysics, which involve data processing, modelling, inversion and tomography, geological structures, and paleomagnetic studies in the order of numbers. The Solid Earth Geophysics is generally distinguished in two categories such as "Global Geophysics" and "Exploration Geophysics". However, they are intimately connected, and overlap in many sectors, especially in large scale research projects. The global geophysics has a more academic and general scientific meaning, and several research groups in Korean universities are carrying out the earthquake seismology and paleomagnetic studies. On the other hand the exploration geophysics focuses on practical application of geophysical concepts, and the public research institutes conduct large projects for exploration of energy and mineral resources and to cope with environmental and natural disaster problems. The geophysical studies for local geology and regional crustal structure utilize various survey methods and usually cover both academic and exploration purposes. The computational geophysics constitutes the indispensable theoretical backgrounds for all geophysical sectors. Many young Korean geophysicists, who have strong background in mathematics and physics, devote to the computational geophysics and several groups have made the internationally highest level achievements. But, Korean geophysicists have to expand their research interests to include more global-scale, high-tech researches and collaborative works with various other science groups.

  • PDF

Interpretation of High-resolution Seismic Data in the Middle Part of the Pungam Basin, Korea (풍암분지 중부지역의 고해상도 탄성파자료 해석)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.201-208
    • /
    • 1999
  • A high-resolution seismic profile acquired across the middle part of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures. Boundary faults, intrusive bodies, and unconformity surfaces are identified on the seismic section. Basin fills are divided into five depositional units (Units I, II, III, IV, and V in descending order). The normal faults were formed by transtentional movement along a sinistral strike-slip fault zone. Unconsolidated sediments, a weathered layer, and sedimentary layers overly the Precambrian gneiss. The granite body intruded at the southeastern part contacts the adjacent sedimentary rocks by a near-vertical fault. Granitic intrusions caused tectonic fractures and normal faults of various sizes. An andesitic intrusive body indicates post-depositional magmatic intrusions. Continuous strike-slip movements have deformed basin-filling sediments (Units I and II).

  • PDF

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.

Response Characteristics of Site-specific using Aftershock Event (여진을 통해 살펴본 대상구간의 응답특성)

  • Ahn, Jae-Kwang;Cho, Seongheum;Jeon, Young-Soo;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.51-64
    • /
    • 2018
  • Korean peninsula is known to be far from the plate boundary and not to generate large-scale earthquakes. However, earthquakes recently occurred in Gyeongju (2016/09/12, $M_L=5.8$) and Pohang (2017/11/15, $M_L=5.4$). The interest in earthquake engineering has increased, and various studies are actively underway by recently events. However, the seismic station network in Korea is less dense than that of the western U.S., resulting in the lack of data for detailed analyses of earthquakes. Therefore, KMA (Korea Meteorological Administration) set up temporary seismic stations and recorded ground motions from aftershocks. In this study, characteristics of Pohang seismic propagation and generation of bedrock motion are analyzed through the aftershock ground motion records at both permanent and temporary stations, as well as through the collected geological structure and site information. As a result, the response at Mangcheon-Li shows evidences of basin effects from both geology structures and measured aftershock motions.

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds (점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구)

  • You, Kwangho;Jung, Suntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2019
  • Mechanized constructions have been frequently increased in soft ground below sea bed or river bed, for urban tunnel construction, and for underpinning the lower part of major structures in order to construct a safer tunnel considering various risk factors during the tunnel construction. However, it is difficult to estimate the subsidence behavior of the ground surface due to excavation and needs to be easily predicted. Thus, in this study, when a twin tunnel is constructed in the soft ground, it is proposed a simpler equation relating to the settlement behavior and a corrected formula applicable to soft ground and large diameter shield tunnels based on the previously proposed theory by Peck (1969). For this purpose, it was analyzed to long-term measurement values such as the amount of maximum settlement, the subsidence range by ground conditions, and interference volume loss due to the parallel construction, etc. As a result, a equation was suggested to predict the amount of maximum settlement in the soft sediment clay ground where is located at the upper part of the excavation site. It is turned out that the proposed equation is more suitable for measurement data in Korea than Peck (1969)'s.