• Title/Summary/Keyword: geological difference

Search Result 176, Processing Time 0.03 seconds

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Evaluation of Terrestrial Gamma Radiation and Dose Rate of the Ogcheon Group Area (옥천층군 일대의 지표방사능과 감마선량 평가)

  • Yun, Uk;Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.577-588
    • /
    • 2020
  • We evaluated the distributions of primordial radionuclides and effective dose rate of the Ogcheon Group, which includes rocks with high uranium content. Terrestrial gamma radiation was measured at 421 points using a portable gamma ray spectrometer. Dividing the study area into five geological units (og1, og2, og3, og4, and igneous rocks) revealed no significant difference in the concentration of surface radioactivity among the types. The concentrations of 40K, eU, and eTh for all samples ranged from 0.7% to 10.3% (average 5.2%), 0.6 to 287.0 ppm (average 8.5 ppm), and 4.0 to 102.4 ppm (average 31.3 ppm), respectively. The absorbed dose rate in the study area (calculated from the activity concentrations of 40K, eU, and eTh) was in the range of 28.84 to 1,714.5 nGy/h (average 195.4 nGy/h). Among the five geological units, the lowest average was 166.3 nGy/h (for og1) and the highest average was 233.3 nGy/h (for og2; median 198.1 nGy/h). The outdoor effective dose rate for the area obtained from the absorbed dose rate was in the range of 0.04 to 2.10 mSv/y (average 0.24 mSv/y). Except for the four sites located in the uranium-bearing coal bed of og2, none of the studied sites exceeded 1 mSv/y.

Elucidation of the Enrichment Mechanism of the Naturally Originating Fluorine Within the Eulwangsan, Yongyudo: Focusing on the Study of the Fault zone (용유도 을왕산 자연기원 불소의 부화기작 규명: 단층대 연구를 중심으로)

  • Lee, Jong-Hwan;Jeon, Ji-Hoon;Lee, Seung-Hyun;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.377-386
    • /
    • 2022
  • In addition to anthropogenic origins, fluorine (F) is naturally enriched in rocks due to geological events, such as magma dissemination, hydrothermal alteration, mineralization, and fault activities. Generally, it has been well known that F is chiefly enriched in the region of igneous and metamorphic rocks, and biotite granite was mostly distributed in the study area. The F enrichment mechanism was not sufficiently elucidated in the previous studies, and the study on a fault zone was conducted to reveal it more precisely. The mineral composition of the fault zone was identical to that of the Eulwangsan biotite granite (EBG), but they were quantitatively different between the two areas. Compared with the EBG, the fault zone showed relatively higher contents of quartz and F-bearing minerals (fluorite, sericite) but lower contents of plagioclase and alkali feldspar. This difference was likely due to hydrothermal mineral alterations. The results of microscopic observations supported this, and the generation of F-bearing minerals by hydrothermal alterations was recognized in most samples. Accordingly, it might be interpreted that the mineralogical and petrological differences observed in the same-age biotite granite widely distributed in the Yongyudo was caused by the hydrothermal alterations due to small-scale geological events.

Evaluation of Consolidation Characteristics Considering the Mixed Gradation Ratio of Soft Ground (연약지반의 입도 혼합비를 고려한 압밀특성평가)

  • Park, Yeong-Mog;Yun, Sang-Jong;Chea, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.99-110
    • /
    • 2009
  • In order to provide the design criteria, the characteristics of consolidation for soft ground improvement have been investigated using the field banking test performed by the vertical drain method at the northern container section in Busan New Port. Field test results indicated that the estimated degree of consolidation in design stage decreased by about 7% compared with the measured one. This difference is attributed to the fact that the conservative geological properties were applied with relatively high amount of maximum clay mixture ratio during the design stage. Based on this findings, another laboratory oedometer test was implemented to consider various combination of mixture ratio. It was found that the consolidation degree increased in accordance with the increase of sand/silt mixture ratio. Also, the proportion of 10%, 50%, and 40% for sand, silt, and clay, respectively, was observed as the best combination of mixture ratio to the actual measurement, which is very similar to the average grain size distribution in the banking test area. Therefore, it is suggested that the overall geological characteristics as well as the grain size distribution should be considered in design stage to improve the soft ground that contains mixture of sand, silt, and clay.

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

Topographical Landscapes and their Controlling Geological Factors in the Cheongryangsan Provincial Park: Lithologic Difference and Faults (청량산 도립공원의 지형경관과 지질학적 지배 요인: 암질차이와 단층)

  • Hwang, Sang Koo;Son, Young Woo;Son, Jin Dam
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.167-181
    • /
    • 2017
  • Cheongryangsan area ($49.51km^2$) has been designated as the Provincial Park in 1982, because it has magnificent aspect and seasonally spectacular landscapes. Especially, Cheongryangsa sitey ($4.09km^2$) has been designated as Noted Scenery No. 23 in 2007, because it has the same topographical landscape as rock cliffs, rock peaks and caves. The most spectacular landscapes are exhibited in the Cheongryangsan Conglomerate and Osipbong Basalt. There are twelve rock peaks on the ridges of the two strata, and many rock cliffs in the several valleys of strata, in which a few caves are formed by differential weathering and erosion. The valleys, in which flow Cheongryang, Bukgok and Cheonae streams, are classified as fault valleys along WNW-ESE faults. The rock cliffs were generated from vertical joints parallel to WNW-ESE faults in the two strata, and the caves were formed by differential weathering and erosion along bedding of sandstones and shales intercalated in the conglomerates. The rock peaks are landscapes formed by differential erosion along crossed vertical joints in the ridges. The vertical joints are developed subparallel to two WNW-ESE faults and a NNE-WWS fault. Therefore the topographical features are caused by existence of the faults and Lithologic difference in the Cheongryangsan Conglomerate and Osipbong Basalt, and by differential weathering and erosion along them.

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

A Comparison of the Land Cover Data Sets over Asian Region: USGS, IGBP, and UMd (아시아 지역 지면피복자료 비교 연구: USGS, IGBP, 그리고 UMd)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.159-169
    • /
    • 2007
  • A comparison of the three land cover data sets (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, and University of Maryland: UMd), derived from 1992-1993 Advanced Very High Resolution Radiometer(AVHRR) data sets, was performed over the Asian continent. Preprocesses such as the unification of map projection and land cover definition, were applied for the comparison of the three different land cover data sets. Overall, the agreement among the three land cover data sets was relatively high for the land covers which have a distinct phenology, such as urban, open shrubland, mixed forest, and bare ground (>45%). The ratios of triple agreement (TA), couple agreement (CA) and total disagreement (TD) among the three land cover data sets are 30.99%, 57.89% and 8.91%, respectively. The agreement ratio between USGS and IGBP is much greater (about 80%) than that (about 32%) between USGS and UMd (or IGBP and UMd). The main reasons for the relatively low agreement among the three land cover data sets are differences in 1) the number of land cover categories, 2) the basic input data sets used for the classification, 3) classification (or clustering) methodologies, and 4) level of preprocessing. The number of categories for the USGS, IGBP and UMd are 24, 17 and 14, respectively. USGS and IGBP used only the 12 monthly normalized difference vegetation index (NDVI), whereas UMd used the 12 monthly NDVI and other 29 auxiliary data derived from AVHRR 5 channels. USGS and IGBP used unsupervised clustering method, whereas UMd used the supervised technique, decision tree using the ground truth data derived from the high resolution Landsat data. The insufficient preprocessing in USGS and IGBP compared to the UMd resulted in the spatial discontinuity and misclassification.

Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2 (이산화탄소로 산성화된 해수에 노출된 돌돔(Oplegnathus fasciatus) 혈구세포에 대한 유전독성(DNA 손상))

  • Choi, Tae Seob;Lee, Ji-Hye;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.483-492
    • /
    • 2014
  • DNA damage such as genotoxicity was identified with comet assay, which blood cell of a marine parrot fish (Oplegnathus fasciatus) was exposed to an acidified seawater, lowered pH gradient making of $CO_2$ gas. The gradient of pH were 8.22, 8.03, 7.81, 7.55 with control as HBSS solution with pH 7.4. DNA tail moment of fish blood cell was $0.548{\pm}0.071$ exposed seawater of pH 8.22 condition, on the other hand, DNA tail moment $1.601{\pm}0.197$ exposed acidified seawater of pH 7.55 lowest condition. The approximate difference with level of DNA damage was 2.9 times between highest and lowest of pH. DNA damage with decreasing pH was significantly increased with DNA tail moment on blood cell of marine fish (ANOVA, p < 0.001). Ocean acidification, especially inducing the leakage of sequestered $CO_2$ in geological structure is a consequence from the burning of fossil fuels, and long term effects on marine habitats and organisms are not fully investigated. The physiological effects on adult fish species are even less known. This result shown that the potential of dissolved $CO_2$ in seawater was revealed to induce the toxic effect on genotoxicity such as DNA breakage.

Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression (로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.116-127
    • /
    • 2011
  • This study conducted landslide susceptibility analysis using logistic regression. The performance of prediction model needs to be evaluated considering two aspects such as a goodness of fit and a prediction accuracy. Thus to gain more objective prediction results in this study, the prediction performance of the applied model was evaluated considering two such evaluation aspects. The selected study area is located between Inje-eup and Buk-myeon in the middle of Kwangwon. Landslides in the study area were caused by heavy rain in 2006. Landslide causal factors were extracted from topographic map, forest map and soil map. The evaluation of prediction model was assessed based on the area under the curve of the cumulative gain chart. From the results of experiments, 87.9% in the goodness of fit and 84.8% in the cross validation were evaluated, showing good prediction accuracies and not big difference between the results of the two evaluation methods. The results can be interpreted in terms of the use of environmental factors which are highly related to landslide occurrences and the accuracy of the prediction model.