DOI QR코드

DOI QR Code

Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression

로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석

  • Yeon, Young-Kwang (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 연영광 (한국지질자원연구원 국토지질연구본부)
  • Received : 2011.10.04
  • Accepted : 2011.11.18
  • Published : 2011.12.30

Abstract

This study conducted landslide susceptibility analysis using logistic regression. The performance of prediction model needs to be evaluated considering two aspects such as a goodness of fit and a prediction accuracy. Thus to gain more objective prediction results in this study, the prediction performance of the applied model was evaluated considering two such evaluation aspects. The selected study area is located between Inje-eup and Buk-myeon in the middle of Kwangwon. Landslides in the study area were caused by heavy rain in 2006. Landslide causal factors were extracted from topographic map, forest map and soil map. The evaluation of prediction model was assessed based on the area under the curve of the cumulative gain chart. From the results of experiments, 87.9% in the goodness of fit and 84.8% in the cross validation were evaluated, showing good prediction accuracies and not big difference between the results of the two evaluation methods. The results can be interpreted in terms of the use of environmental factors which are highly related to landslide occurrences and the accuracy of the prediction model.

본 논문에서는 로지스틱 회귀분석 기법을 이용하여 산사태 취약성 분석을 수행하였다. 예측모델의 성능은 모델의 적합도 검증을 통해 사용된 데이터가 모델에 얼마나 잘 반영되어 구축되었는지에 대한 적합도 평가뿐만 아니라 예측성능에 대한 평가가 필요하다. 따라서 이 논문에서는 모델에 대한 객관적인 결과를 얻기 위해 이와 같은 두 가지 측면에 대하여 예측성능 평가를 적용하였다. 연구지역은 2006년도 집중 호우로 많은 산사태가 발생한 강원도 인제 일대를 대상으로 하였다. 산사태 관련인자들은 지형도, 토양도, 임상도로부터 추출하였다. 예측모델에 대한 평가는 누적이득차트 곡선의 하부영역을 계산하였다. 예측모델의 적합도 평가에서는 87.9% 교차검증을 통한 예측정확도 평가 결과 84.8%로 두 평가 결과간의 큰 차이를 보이지 않으며 좋은 성능의 결과를 산출하였다. 이는 산사태와 관련성이 높은 유발인자와 예측모델 성능에서 기인된 결과로 해석 될 수 있다.

Keywords

References

  1. Aleotti, P. and R. Chowdhury. 1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment 58(1):21-44. https://doi.org/10.1007/s100640050066
  2. Atkinson, P.M. and R. Massari. 1998. Generalized linear modeling of susceptibility to landsliding in the central Apennines, Italy. Computer & Geosciences 24(4):373-385. https://doi.org/10.1016/S0098-3004(97)00117-9
  3. Bromhead. E.N. 1992. The Stability of Slopes. Blackie Academic & Professional, 2ed., London, UK. 411pp.
  4. Chung, C.F. and A.G. Fabbri. 1999. Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Sensing 65(12):1388-1399.
  5. Cruden, D.M. and D.J. Varnes, 1996. Landslides types and processes. In: A.K. Turner and R.L. Schuster(ed.). Landslides: Investigation and Mitigation. Transportation Research Board, Special Report 247. National Academy Press, Washington D.C., USA, pp.36-75.
  6. Dai, F.C. and C.F. Lee. 2002. Landslide characteristics and slope instability modeling using GIS, Lantau island, Hong Kong. Geomorphology 42:213-228. https://doi.org/10.1016/S0169-555X(01)00087-3
  7. Dai, F.C., C.F.J. Lee, J. Li and Z.W. Xu. 2001. Assessment of landslide susceptibility on the natural terrain of LantauIsland, HongKong. Environmental Geology 40:381-391. https://doi.org/10.1007/s002540000163
  8. Donati, L. and M.C. Turrini. 2002. An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia,Italy). Engineering Geology 63: 277-289. https://doi.org/10.1016/S0013-7952(01)00087-4
  9. Ermini, L., L. Catani and N. Casagli. 2004. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66(1-4):327-343.
  10. Gomez, H. and T. Kavzoglu. 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River. Basin, Venezuela. Engineering Geology 78:11- 27. https://doi.org/10.1016/j.enggeo.2004.10.004
  11. Guzzetti, F., P. Reichenbach, F. Ardizzone, M. Cardinali and M. Galli. 2006. Estimating the quality of landslide susceptibility models. Geomorphology 81:166-184. https://doi.org/10.1016/j.geomorph.2006.04.007
  12. Hong, W.P. 1990. Recent technical review on slope stabilizing methodology. Korean Geotechnical Society 6(3):88-98.
  13. Lachenbruch, P. and R. Mickey. 1968. Estimation of error rates in discriminant analysis. Technometrics 10:1-11. https://doi.org/10.1080/00401706.1968.10490530
  14. Lee, S. and U.C. Choi. 2003. Development of GIS-based geological hazard information system and its application for landslide analysis in Korea. Geosciences Journal 7:243-252. https://doi.org/10.1007/BF02910291
  15. Lee, S., J.H. Ryu, J.S. Won and H.J. Park. 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology 71(3-4): 289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
  16. Lee, S. and K.D. Min. 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology 40:1095-1113. https://doi.org/10.1007/s002540100310
  17. Luzi, L., F. Pergalani and M.T.J. Terlien. 2000. Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Engineering Geology 58:313- 336. https://doi.org/10.1016/S0013-7952(00)00041-7
  18. Maimon, O. and L. Rokach. 2005. The Data Mining and Knowledge Discovery Handbook. Springer, USA. 1383pp.
  19. Melchiorre, C., M. Matteucci, A. Azzoni and A. Zanchi. 2008. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94:379-400. https://doi.org/10.1016/j.geomorph.2006.10.035
  20. Nefeslioglu, H., T. Duman and S. Durmaz. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401-418. https://doi.org/10.1016/j.geomorph.2006.10.036
  21. Neuhäuser, B. and B. Terhorst. 2007. Landslide susceptibility assessment using "weights-of-evidence" applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12- 24. https://doi.org/10.1016/j.geomorph.2006.08.002
  22. Skempton, A.W. and J.N. Hutchinson. 1969. Stability of natural slopes. Proceeding of the 7th International Conference of Soil Mechanics. Mexico, 1969. Vol. 2, pp.291-340.

Cited by

  1. Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies vol.16, pp.3, 2013, https://doi.org/10.11108/kagis.2013.16.3.193
  2. Economic and Logistic Regression Analysis for Verifying of Validity of the Regeneration Project Policy for the Zones Vulnerable to Natural Disaster vol.13, pp.6, 2013, https://doi.org/10.9798/KOSHAM.2013.13.6.167
  3. Assessment of the Distributional Probability for Evergreen Broad-Leaved Forests(EBLFs) Using a Logistic Regression Model vol.19, pp.1, 2016, https://doi.org/10.11108/kagis.2016.19.1.094
  4. Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results vol.17, pp.3, 2014, https://doi.org/10.11108/kagis.2014.17.3.001
  5. A Comparative Study of the Frequency Ratio and Evidential Belief Function Models for Landslide Susceptibility Mapping vol.34, pp.6, 2016, https://doi.org/10.7848/ksgpc.2016.34.6.597
  6. Analysis of Leaf Node Ranking Methods for Spatial Event Prediction vol.17, pp.4, 2014, https://doi.org/10.11108/kagis.2014.17.4.101
  7. Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods vol.32, pp.11, 2018, https://doi.org/10.1007/s00477-018-1609-y
  8. Assessing the Cost of Damage and Effect of Adaptation to Landslides Considering Climate Change vol.10, pp.5, 2018, https://doi.org/10.3390/su10051628
  9. MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측 vol.22, pp.1, 2011, https://doi.org/10.14249/eia.2013.22.1.039
  10. 생태계 용역가치를 이용한 대한민국 생태계의 기능적 변화 예측 및 분석 vol.16, pp.2, 2013, https://doi.org/10.11108/kagis.2013.16.2.114
  11. Development of Methodology for Vulnerability Assessment of Chemical Accident in Terrestrial Ecosystem:(1) Focusing on the Trees vol.42, pp.5, 2011, https://doi.org/10.4491/ksee.2020.42.5.229
  12. 로지스틱 회귀모형을 이용한 환경정책 효과 분석: 울산광역시 녹지변화 분석을 중심으로 vol.23, pp.4, 2011, https://doi.org/10.13087/kosert.2020.23.4.13
  13. Development of Methodology for Vulnerability Assessment of Chemical Accident in Terrestrial Ecosystem: (2) Focusing on the Herbs vol.42, pp.12, 2011, https://doi.org/10.4491/ksee.2020.42.12.610
  14. 고병원성 조류인플루엔자(HPAI) 발생농가 입지특성 vol.23, pp.4, 2020, https://doi.org/10.11108/kagis.2020.23.4.140
  15. 로지스틱 회귀분석을 이용한 도로비탈면관리시스템 데이터 활용 검토 연구 vol.30, pp.4, 2011, https://doi.org/10.9720/kseg.2020.4.649