• 제목/요약/키워드: geodesic line

검색결과 19건 처리시간 0.025초

막구조물의 재단도를 위한 측지선 형상해석 알고리즘 (Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures)

  • 이경수;한상을
    • 한국강구조학회 논문집
    • /
    • 제22권1호
    • /
    • pp.33-42
    • /
    • 2010
  • 막구조의 설계에서 막재료의 효율적인 사용을 위해서는 측지선에 의한 재단도 해석을 수행해야 한다. 막구조의 측지선 결정방법은 크게 측지요소(geodesic element)를 이용한 비선형 형상해석에 의한 방법과 임의의 곡면 형상에 대한 측지선 탐색에 의한 방법으로 나눌 수 있는데, 현재까지 이 두 가지 해석법은 모두 3절점요소에 대한 적용알고리즘 만이 제시되었고, 4절점 요소에 대한 해석법은 제시되지 않았다. 이는 막구조의 설계에서 4절점 요소의 적용을 어렵게 하는 가장 큰 요인이라고 할 수 있다. 본 연구에서는 3절점, 4절점 평면요소에 동시에 적용 가능한 측지선 결정알고리즘을 제시한다. 이를 위해 저자의 이전 연구를 발전시켜 명시적 비선형 해석법인 동적이완법을 비선형 측지선 형상해석에 적용하였다. 또한 3절점요소 뿐만 아니라 4절점요소에 대해서도 측지요소의 도입에 의한 형상해석이 가능하도록 하였으며, 4절점요소와 측지선요소에 의한 비선형 형상해석 및 재단도 해석예제를 통하여 본 연구에서 제시한 알고리즘의 정확성 및 효율성을 검증하였다. 따라서 본 연구에서 제안한 측지선 형상해석알고리즘은 형상해석, 응력해석, 재단도 해석과 관련된 일련의 해석과정에 대한 4절점요소의 적용성을 높일 수 있을 것으로 사료된다.

A CHARACTERIZATION OF MAXIMAL SURFACES IN TERMS OF THE GEODESIC CURVATURES

  • Eunjoo Lee
    • 충청수학회지
    • /
    • 제37권2호
    • /
    • pp.67-74
    • /
    • 2024
  • Maximal surfaces have a prominent place in the field of differential geometry, captivating researchers with their intriguing properties. Bearing a direct analogy to the minimal surfaces in Euclidean space, investigating both their similarities and differences has long been an important issue. This paper is aimed to give a local characterization of maximal surfaces in 𝕃3 in terms of their geodesic curvatures, which is analogous to the minimal surface case presented in [8]. We present a classification of the maximal surfaces under some simple condition on the geodesic curvatures of the parameter curves in the line of curvature coordinates.

막 구조물의 측지선을 이용한 재단도 생성에 관한 연구 (A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line)

  • 안상길;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

막 구조물의 측지선 탐색과 재단도 작성에 관한 연구 (A Study on The Search of Geodesic Line and Cuting Pattern Generation of Membrane Structures)

  • 전진형;정을석;손수덕;김승덕
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.325-332
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cutting pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cutting pattern generation using geodesic line, and investigate the result of example's cutting pattern in detail.

  • PDF

막 구조물의 재단도 생성을 위한 지오데식 라인 알고리즘에 관한 연구 (A Study on the Geodesic Line Algorithms for Cutting Pattern Generation of Membrane Structures)

  • 배종효;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.357-364
    • /
    • 2000
  • The three main processes involved in the design of stressed membrane surface are surface form-finding, stress analysis and cutting pattern generation. The last process, cutting pattern generation, is considered as a very important procedure in the aspect of the practical design for the fabric membrane surface. In this paper, The cutting pattern generation technique using the geodesic line algorithms is first introduced. And the numerical examples resulting from this technique are presented. Cable elements are used for the approximating membrane surface and two kinds of model, square line and central line model, are used in pattern generation. Finally, a number of different cutting pattern generation for the same membrane surface is carried out and the numerical results are compared each

  • PDF

막구조물의 재단도 작성과 곡률 변화에 따른 손실률에 관한 연구 (A Study on The Cutting Pattern Generation of Membrane Structures and Loss Ratio of Febrics According to the Curvature)

  • 전진형;정을석;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.205-213
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cutting pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cooing pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cutting pattern generation using geodesic line, and investigate the result of example's cutting pattern in detail.

  • PDF

A STUDY OF THE TUBULAR SURFACES ACCORDING TO MODIFIED ORTHOGONAL FRAME WITH TORSION

  • Gulnur SAFFAK ATALAY
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.279-290
    • /
    • 2024
  • In this study, tubular surfaces were introduced according to the modified orthogonal frame defined at the points where the torsion is different from zero in the 3-dimensional Euclidean space. First, the relations between the Frenet frame and the modified orthogonal frame with torsion are given. Then, the singularity, Gaussian curvature, mean curvature and basic forms of the tubular surface given according to the modified orthogonal frame with torsion were calculated. In addition, the conditions for the parameter curves of the tubular surface to be geodesic, asymptotic and line of curvature were examined. Finally, tubular surface examples based on both the Frenet frame and the modified orthogonal frame with torsion were given to support the study.

막 구조물의 재단도 작성과 막재의 손실률에 관한 연구 (A Study on The Cutting Pattern Generation of Membrane Structures and The Loss-Ratio of Material)

  • 손수덕;정을석;김승덕
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.117-127
    • /
    • 2006
  • 경량 연성구조시스템 중 하나인 막 구조물은 대공간 구조물에 많이 사용되어진다. 막 구조물은 축강성이 강하고 휨강성이 매우 작은 재료를 주 구조재로 사용하기 때문에 다른 구조물과 달리 구조설계에서는 형상해석, 응력-변형해석 그리고 재단도 등의 일련의 과정을 필요로 한다. 재단도의 작성에는 구조물의 크기나 곡률 그리고 재료적 강성에 따라 많은 변수가 작용하며 다른 설계과정과는 매우 다르다. 따라서 일반 구조설계용 프로그램은 막 구조물의 구조설계에 부적당하다. 본 연구에서는 막 구조물의 측지선을 이용한 재단도 작성 프로그램을 개발하고, 예제를 통해 재단도 작성결과를 비교 고찰하도록 한다.

  • PDF

METRIC FOLIATIONS ON HYPERBOLIC SPACES

  • Lee, Kyung-Bai;Yi, Seung-Hun
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.63-82
    • /
    • 2011
  • On the hyperbolic space $D^n$, codimension-one totally geodesic foliations of class $C^k$ are classified. Except for the unique parabolic homogeneous foliation, the set of all such foliations is in one-one correspondence (up to isometry) with the set of all functions z : [0, $\pi$] $\rightarrow$ $S^{n-1}$ of class $C^{k-1}$ with z(0) = $e_1$ = z($\pi$) satisfying |z'(r)| ${\leq}1$ for all r, modulo an isometric action by O(n-1) ${\times}\mathbb{R}{\times}\mathbb{Z}_2$. Since 1-dimensional metric foliations on $D^n$ are always either homogeneous or flat (that is, their orthogonal distributions are integrable), this classifies all 1-dimensional metric foliations as well. Equations of leaves for a non-trivial family of metric foliations on $D^2$ (called "fifth-line") are found.