• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.028 seconds

Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm (유전자 알고즘을 이용한 자동차 주행 제어기의 최적화)

  • Kim Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.212-219
    • /
    • 2006
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

fuzzy sliding controller design using genetic algorithm (유전 알고리즘을 이용한 퍼지 슬라이딩 제어기 설계)

  • 한종길;유병국;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.964-967
    • /
    • 1996
  • In this paper, we present a fuzzy-sliding controller design using genetic algorithm. We can suppress chattering and enhance the robustness of controlled system by using this controller and do that genetic algorithm can easily find out a nearly optimal fuzzy rule performance of this controller is tested by simulation of car system with two pole.

  • PDF

FUZZY RULE MODIFICATION BY GENETIC ALGORITHMS

  • Park, Seihwan;Lee, Hyung-Kwang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.646-651
    • /
    • 1998
  • Fuzzy control has been used successfully in many practical applications. In traditional methods, experience and control knowledge of human experts are needed to design fuzzy controllers. However, it takes much time and cost. In this paper, an automatic design method for fuzzy controllers using genetic algorithms is proposed. In the method, we proposed an effective encoding scheme and new genetic operators. The maximum number of linguistic terms is restricted to reduce the number of combinatorial fuzzy rules in the research space. The proposed genetic operators maintain the correspondency between membership functions and control rules. The proposed method is applied to a cart centering problem. The result of the experiment has been satisfactory compared with other design methods using genetic algorithms.

  • PDF

The Development of Genetic Fuzzy System for Estimating Link Traveling Speed (주행속도 추정을 위한 Genetic Fuzzy System의 개발)

  • Youn, Yeo-Hun;Lee, Hong-Chul;Kim, Yong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.32-40
    • /
    • 2003
  • In this study, we develop the Genetic Fuzzy System(GFS) to estimate the link traveling speed. Based on the genetic algorithm, we can get the fuzzy rules and membership functions that reflect more accurate correlation between traffic data and speed. From the fact that there exist missing links that lack traffic data, we added a Case Base Reasoning(CBR) to GFS to support estimating the speed of missing links. The case base stores the fuzzy rules and membership functions as its instances. As cases are accumulated, the case base comes to offer appropriate cases to missing links. Experiments show that the proposed GFS provides the more accurate estimation of link traveling speed than existing methods.

APPLICATION OF GENETIC-BASED FUZZY INFERENCE TO FUZZY CONTROL

  • Park, Daihee;Kandel, Abraham;Langholz, Gideon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.3-33
    • /
    • 1992
  • The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown ill this paper that the performance of fuzzy control systems call be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate all optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.

  • PDF

Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

  • Park Keon-Jun;Lee Young-Il;Oh Sung-Kwun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

A Control of Inverted pendulum Using Genetic-Fuzzy Logic (유전자-퍼지 논리를 사용한 도립진자의 제어)

  • 이상훈;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.977-984
    • /
    • 2001
  • In this paper, Genetic-Fuzzy Algorithm for Inverted Pendulum is presented. This Algorithms is combine Fuzzy logic with the Genetic Algorithm. The Fuzzy Logic Controller is only designed to two inputs and one output. After Fuzzy control rules are determined, Genetic Algorithm is applied to tune the membership functions of these rules. To measure of performance of the designed Genetic-Fuzzy controller, Computer simulation is applied to Inverted Pendulum system. In the simulation, In the case of f[0.3, 0.3] Fuzzy controller is measured that maximum undershoot is $-5.0 \times 10^{-2}[rad]$, maximum undershoot is $3.92\times10^{-2}[rad]$ individually however, Designed algorithm is zero. The Steady state time is approximated that Fuzzy controller is 2.12[sec] and designed algorithm is 1.32[sec]. The result of simulation, Resigned algorithm is showed it's efficient and effectiveness for Inverted Pendulum system.

  • PDF

Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms (강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.