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Abstract

In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model
identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of ob-
Jects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuz-
zy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm
help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values
of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned
effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the

performance of the conventional fuzzy models in the literature.
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1. Introduction

There has been a diversity of approaches to fuzzy
modeling. To enumerate a few representative trends, it is es-
sential to refer to some developments that have happened over
time. In the early 1980s, linguistic modeling(1,2] and fuzzy
relation equation-based approach[3,4] were proposed as pri-
mordial identification methods for fuzzy models. In the lin-
guistic approach, Tong identified a gas furnace process by
means of a logical examination of data[7]. Next, C. W. Xu re-
ported good results obtained through the modified Tongs
method[8] and proposed an algorithm for an adaptive model
based on decision tables. The main drawback of the method
was apparent when dealing with high-order multivariable sys-
tems[5] where issues of memory requirements and computation
time started to become serious stumbling blocks.- Pedrycz in-
troduced an idea of identification of fuzzy systems realized in
a formal framework of fuzzy relation equations. The proposed
methodology dwelled on a concept of referential fuzzy sets re-
garded as modeling landmarks[2]. C. W. Xu and others pre-
sented a self-learning algorithm for the simple SISO fuzzy
model[5]. In the fuzzy relation equation-based approach,
Pedrycz identified fuzzy systems, using the referential fuzzy
set and Zadeh's conditional possibility distributions[3]. Xu
constructed and identified the fuzzy relations of a model using
referential fuzzy sets[S,6]. The general class of Sugeno-Takagi
models[9] gave rise to more sophisticated rule-based systems
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where the rules come with conclusions forming local re-
gression models. While appealing with respect to the basic
topology (a modular fuzzy model composed of a series of
rules)(8,10], these models still await formal solutions as far as
the structure optimization of the model is concerned, say a
construction of the underlying fuzzy sets-information granules
being viewed as basic building blocks of any fuzzy model.

. Some enhancements to the mode] have been proposed by Oh

and Pedrycz[11], yet the problem of finding "good" initial pa-
rameters of the fuzzy sets in the rules remains open.

This study concentrates on the central problem of fuzzy
modeling that is a development of information granules-fuzzy
sets. Taking into consideration the essence of the granulation
process, we propose to cast the problem in the setting of clus-
tering techniques and genetic algorithms. The design method-
ology emerges as a hybrid structural optimization and para-
metric optimization. Information granulation with the aid of
HCM clustering help determine the initial parameters of fuzzy
model such as the initial apexes of the membership functions
and the initial values of polynomial function being used in the
premise and consequence part of the fuzzy rules. And the ini-
tial parameters are tuned (adjusted) effectively with the aid of
the genetic algorithms and the least square method. The pro-
posed model is evaluated with using numerical example and is
contrasted with the performance of conventional models in the
literature

2. Information Granulation (IG)

Informal speaking, information granules[12,13] are viewed
as linked collections of objects (data point, in particular)
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drawn together by the criteria of proximity, similarity, or
functionality. Granulation of information is an inherent and
omnipresent activity of human beings carried out with intent
of better understanding of the problem. In particular, gran-
ulation of information is aimed at splitting the problem into
several manageable chunks. In this way, we partition this
problem into a series of well-defined subproblems of a far
lower computational complexity than the original one. The
form of information granulation (IG) themselves becomes an
important design feature of the fuzzy model, which are geared
toward capturing relationships between information granules.
It is worth emphasizing that the HCM clustering has been
used extensively not only to organize and categorize data, but
it becomes wuseful in data compression and model
identification. For the sake of completeness of the entire dis-
cussion, let us briefly recall the essence of the HCM algo-
rithm[14].
[Step 1] Fix the number of clusters (2<c<n) and initialize the

partition matrix U@eMm c

M, = {U | uike{o!l}’ ,Z::lui/ezl, 1S Zluik<n] M

[Step 2] Calculate the center vectors v; of each cluster:

7

_ A

(D=
vi7={va, vp, 0, vy= n
B

Where, [ux]= U, i =1, 2, ..c, /=1, 2, ...m.

[Step 3] Update the partition matrix U™; these modifications
are based on the standard Euclidean distance function between
the data points and the prototypes,

m 1/2
dy=d x,= v )= xs= vill =] Z = 0)’]
®)

+o_ [ 1 dP=min{dP} for all jec 4
Yk { 0 otherwise @

[Step 4] Check a termination criterion. If

(7+1)_

I U U | <e(tolerance level) (5)

Stop ; otherwise set » = r+1 and return to [Step 2].

3. IG-based Fuzzy Inference Systems

The identification procedure for fuzzy models is usually
split into the identification activities dealing with the premise
and consequence parts of the rules. The identification com-
pleted at the premise level consists of two main steps. First,
we select the input variables xj, x3, ..., xx of the rules. Second,
we form fuzzy partitions (Low, High, etc.) of the spaces over
which these individual variables are defined. In such a sense,
this phase is all about information granulation as the elements
of the fuzzy partitions we are interested in when developing
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any rule-based model. The number of the fuzzy sets con-
structed there implies the number of rules of the model. In
addition, one has to construct detailed membership functions
of the information granules. The identification of the con-
sequence part of the rules embraces two phases, namely 1) a
selection of the consequence variables of the fuzzy rules, and
2) determination of the parameters of the consequence
(conclusion part). And the least square error (LSE) method
used at the parametric optimization of the consequence parts
of the successive rules.

In this study we carry out the modeling using character-
istics of input-output data set. Therefore, it is important to un-
derstand the characteristics of data. To find this we use HCM
clustering. By classifying data as characteristics through HCM
clustering, we design the fuzzy model by means of center of
classified clusters.

3.1 Premise Identification

For the triangular membership functions we have parame-
ters to optimize. In the simplest scenario as illustrated in
Figure 1, the minimal and maximal initial values of the verti-
cal points of the membership functions depend on the range
of experimental data encountered in the data set. Note that in
this case fuzzy sets are distributed uniformly across the entire
universe of discourse (space). Owing to the properties of those
fuzzy sets (uniform distribution), only the boundaries of the
entire space are subject to optimization. The situation shown
in figure 2 is quite different from the uniform distribution of
the information granules. The HCM clustering helps us organ-
ize the data into cluster, and in this way we take into account
the characteristics of the experimental data.

LOW HIGH
Hy X
Hy

Xmin Xmax
X

Fig. 1. Fuzzy partition composed of uniformly distributed
fuzzy sets

LOW HIGH

c, [

Xmin € s Xmax

Fig. 2. Fuzzy partition composed of nonuniformly distributed
fuzzy sets constructed with aid of clustering technique

To determine the initial membership parameters in premise
part we are
[Step 1] Find the center values of each cluster from input-out-
put data set using HCM clustering.

G s =i s mud), -, Ok s = (ke 5 M) (6)

here, ¢ is the number of clusters, v and my. are center val-
ues of k-th input and output data respectively.
[Step 2] Divide the correlational fuzzy space between input



Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

variables by center values. At this time, those values become
the initial values of the vertical points of the membership
functions.

3.2 Consequence Identification

The characteristics of input-output data is also involved in
the conclusion parts as follows:
[Step 1] Find input data set (xi, x2, ..., xx) that is included the
respective fuzzy space because the fuzzy rules is formed by
correlation between input variables.
[Step 2] Seek the corresponding output data at this time and
find input-output data set (xi, x2, ..., xx ; ») that is contained
the each fuzzy space. In this way, the center values of in-
put-output variables in the rules of the conclusion parts are
determined and these values become the initial values of the
consequence polynomial functions.

X, oy xk s y—WVy, -, Vig s M) (7

The identification of the conclusion parts of the rules deals
with a selection of their structure that is followed by the de-
termination of the respective parameters of the local functions
occurring there.

3.2.1 Type 1: Simplified Fuzzy Inference

The consequence part of the simplified inference mecha-
nism is a constant. The rules read in the form

R IF xyis A .and -+ and x,is A 8
Then y;— M;= f{x -, x,)

The calculations of the numeric output of the model, based
on the activation (matching) levels of the rules there, are car-
ried out in the well known format

é i¥i n
yr= 1  Widi 21 w;(ap+ M) 9)
=

Here, as the normalized value of w;, we use an abbreviated
notation to describe an activation level of rule R to be in the
form

(10

wi;=

where R is the j-th fuzzy rule, xx represents the input vari-
ables, 4. is a membership function of fuzzy sets, ap is a con-
stant, M; is a center value of output data, » is the number of
fuzzy rules, y* is the inferred output value, w; is the premise
fitness matching R (activation level).

If the input variables of the premise and parameters are
given in consequence parameter identification, the optimal
consequence parameters that minimize the assumed perform-
ance index can be determined. In what follows, we define the
performance index as the root mean squared error (RMSE).

PI=\ = 31 (=9

(1

where y* is the output of the fuzzy model, m is the total
number of data, and i is the data number. Furthermore, x;, x2;,
v Xy ¥i (51, 2, ..., m) are pairs of input-output data sets.
The consequence parameters ap can be determined by the
standard least-squares method. In the fuzzy model of Type 1,
the parameters can be estimated by solving the optimization
problem.

2= (X"TX"'XTy (12)

where,

V== M0 2= G M W) -+ v o M 3017,

X =[x, x xm]T, xg‘z[ ;,“ WL, a=layg - aw]r

3.2.2 Type 2: Linear Fuzzy Inference

The conclusion is expressed in the form of a linear rela-
tionship between inputs and output variable. This gives rise to
the rules in the form

R:IF xyisA.and - and x5 A (13)

Then yj_Mj—_—fi(xl,"'yxk)
where £ is a linear function of the input variables;

f,‘(xl"",xk)= a)[)+a]](x1'_ V]j) +"'+ajk(xk— ij)
(14)

here, Vi is a center value of input data. The numeric out-
put y is determined in the same way as in the previous type
of rule; that is, by taking a weighted sum of the activation

levels of the individual rules;

leﬁ i le/i (fi(xl,"',xk)+Mj)
* 7 — 1 (15)
7

{
Y= n
le /Zl Wi

=

= ]Zl wyi (ap+ay(x;— Vi)++a(xu— Vi) + M)

The consequence parameters are produced by the standard
least-squares method.

3.2.3 Type 3: Quadratic Fuzzy Inference

The consequence part of the quadratic inference mechanism
is a quadratic polynomial. The rules read in the form

Rj: IF X1 Z.SAlcand --- and xkisAkC (16)

Then y;— M;= f{x; -, xp)

where f; is a polynomial function of the input variables; name-
ly:

fj(xlv"',xk)=a',[)+ a/](xl - Vlj) + e ajk(.xk“ ij)
t @i n(x = V)P o+ ajon(x— Vi)t
+a;on+ (%1 — Vi) — Vo) + -
+ a0 (Fe-1— Ve )= Vi)
amn

The numeric output y* is determined in the same way as in
the previous type of rule.
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3.2.4 Type 4: Modified Quadratic Fuzzy Inference

The conclusion is expressed in the form of the quadratic
polynomial omitted square terms between inputs and output
variable. This gives rise to the rules in the form

R IF x1is A and - and x5 A 4 (18)

Then y_f_szfi(xl,"',xk)
where f; is a polynomial function of the input variables; name-
ly:

flxy e, 2 =ap+ay(o = Vi) 4+ ap(xy— Vi)
+ s 12— Vi)log— Vo) + -
+ @ e v xe-1— V- )%= Vi)

(19)

4. Optimization of IG-based FIS

The need to solve optimization problems arises in many
fields and is especially dominant in the engineering
environment. There are several analytic and numerical opti-
mization techniques, but there are still large classes of func-
tions that are fully addressed by these techniques. Especially,
the standard gradient-based optimization techniques that are
being used mostly at the present time are augmented by a dif-
ferential method of solving search problems for optimization
processes. Therefore, the optimization of fuzzy models may
not be fully supported by the standard gradient-based opti-
mization techniques, because of the nonlinearity of fuzzy mod-
els represented by rules based on linguistic levels. This forces
us to explore other optimization techniques such as genetic
algorithms. First of all, to identify the fuzzy model we de-
termine such an initial structure as the number of input varia-
bles, input variables being selected and the number of mem-
bership functions in premise part and the order of polynomial
(Type) in conclusion. And then the membership parameters of
the premise are optimally tuned by GAs. .

Genetic algorithms[15] have proven to be useful in opti-
mization of such problems because of their ability to effi-
ciently use historical information to obtain new solutions with
enhanced performance and a global nature of search supported
there. GAs are also theoretically and empirically proven to
support robust searches in complex search spaces. Moreover,
they do not get trapped in local minima, as opposed to gra-
dient-descent techniques being quite susceptible to this
shortcoming.

In this study, for the optimization of the fuzzy model, ge-
netic algorithms use the serial method of binary type, rou-
lette-wheel in the selection operator, one-point crossover in the
crossover operator, and invert in the mutation operator. Here,
we use 1000 generations, 60populations, 10bits per string,
crossover rate equal to 0.6, and mutation probability equal to
0.1.

5. Experimental Studies

This section includes comprehensive numeric studies illus-
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trating the design of the fuzzy model. We demonstrate how
1G-based FIS can be utilized to predict future values of a cha-
otic time series. The performance of the proposed model is al-
so contrasted with some other models existing in the literature.
The time series is generated by the chaotic Mackey-Glass dif-
ferential delay equation [16] of the form:

20

o = —0.1x(®)

0.2x(t=17)
v 1+x°(t=2)

The prediction of future values of this series arises is a
benchmark problem that has been used and reported by a
number of researchers. From the Mackey-Glass time series
x(f), we extracted 1000 input-output data pairs for the type
from the following the type of vector format such as: [x(z-30),
x(-24), x(t-18), x(1-12), x(#-6), x(f); x(t+6)] where ¢ =
118-1117. The first 500 pairs were used as the training data
set while the remaining 500 pairs were the testing data set for
assessing the predictive performance.

We carried out the identification from ex-
perimental data using GAs to design Max_Min -based and
IG-based fuzzy model. The number of input variables was set
to be selected maximum up to four from above the type of
vector format. The corresponding input variables was picked
up x(#-30), x(#-18), x(#-12), x(?) both of two. The number of
membership  functions  assigned to each input of
Max_Min-based fuzzy model was set to two, three, three, and
two, and the other hand, the number of membership functions
of IG-based fuzzy model was selected to two, so the number
of rules is 36 and 16, respectively. In the conclusion, both of
two models were set to consequence type 3. And then for
each fuzzy model, we conducted optimally by auto-tuning the
parameters of the premise membership functions.

Table 1 shows the performance index for Max_Min -based
and 1G-based fuzzy model with four input variables, which
consist of consequence type 3.

structure

Table 1. Performance index of Max Min-based and IG-based
fuzzy model(6=0.0)

e input | No. of
Model | Identification variable | MFs Type Pi E Pl
I "E"?gi 0.0094 | 0.0091
ax/Min x(t-
FIS «(12) 2x3x3x2 | Type 3
Parameters (1) 0.0021 {0.0020
Structure x("?g) 0.0007 | 0.0070
1G_FIS xg_IZ; 2x2x2x2 | Type 3
x(t
Parameters x(?) 0.0005 | 0.0005
From the table 1 it is clear that the performance of a

1G-based fuzzy model is better than that of a Max_Min-based
fuzzy model not only after identifying the structure but also
after identifying optimally the parameters.

The 1G-based fuzzy model comes with sixteen rules with
two membership functions for four input variables. Figure 3 is
partitioned into two fuzzy input spaces for the input variables.
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The same figure shows membership functions of each input
variable according to the partition of fuzzy input spaces using
HCM clustering and GAs.

=+ — G based GAs —— HCM —-— IG based GAs

o.sss‘ﬁ 0.63 0.755\ /1.|33
0571 0.636 0783 1129
(2) x(1-30) (b) x(-18)
—— HCM —-— IG based GAs — HCM — - = IG based GAs

s B s B
/'/ \ ‘\'\

~ flome AN Slot0t 1078 X

0733 1142 0.687 un

(c) x(r-12) (d) x(®

Fig. 3. Initial and optimized membership parameters for
[G-based fuzzy model
3

pu10? x10°

——— . Mav/Min_FIS(Type 3)
35 —-— : IG_FIS(Typc 3} 35

—— ;. Max/Min_FIS(Type 3)
—-— IG_FIS(Type 3y

120 140 o 20 40 60 80 100 120 140
generation generation

(a) PI (b) E_PI
Fig. 4. Optimal convergence process of performance index for
Max_Min-based and [G-based fuzzy model
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(c) Testing output (d) Predicting error of testing data
Fig. 5. Model output and predicting error of training and
testing data for 1G-based fuzzy model

Figure 4 depicts the values of the performance index pro-
duced in successive generation of the GAs. It is obvious that
the performance of an IG-based fuzzy model is good from ini-
tial generation due to the characteristics of input-output data.

Model output and predicting error of training and testing
data for 1G-based fuzzy model is presented in figure S.

The identification error (performance index) of the proposed
model is also compared to the performance of some other
models in table 2. Here the non-dimensional error index
(NDEI) is defined as the root mean square errors divided by
the standard deviation of the target series.

Table 2. Comparison of identification error with previous
fuzzy models

Model NOOfl i | pr | E_pr | NDEI
rules =
7 0.004
Wang's model[17] 23 10013
31 |0.010
Cascaded-correlation
NN(18] 0.06
Backpropagation MLP[18] 0.02
6th-order polynomialf18] 0.04
ANFIS[19] 16 0.0016]0.0015| 0.007
FNN model[20] 0.014 | 0.009
Recurrent neural
networkj21] 0.0138
Our_model 16 0.0005]0.0005 | 0.0022

6. Concluding Remarks

In this paper, we have developed a comprehensive identi-
fication framework for fuzzy model based on information
granulation. The underlying idea deals with an optimization of
information granules by exploiting techniques of clustering and
genetic algorithms., The experimental study showed that the
model is compact (realized through a small number of rules),
and their performance is superb in comparison to other
models. The proposed model is effective for nonlinear com-
plex systems, so we can construct a well-organized model.

While the detailed discussion was focused on triangular
fuzzy sets, the developed methodology applies equally well to
any other class of fuzzy sets as well as a type of nonlinear
local model. Moreover, the models scale up quite easily and
do not suffer from the curse of dimensionality encountered in
other identification techniques of rule-based systems.
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