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Fuzzy control has been used successfully in many practical applications. In traditional methods, experience and control knowledge of human
experts are needed to design fuzzy controllers. However, it takes much time and cost. In this paper, an automatic design method for fuzzy
controllers using genetic algorithms is proposed. In the method, we proposed an effective encoding scheme and new genetic operators. The
maximum number of linguistic terms is restricted to reduce the number of combinatorial fuzzy rules in the search space. The proposed genetic
operators maintain the correspondency between membership functions and control rules. The proposed method is applied to a cart centering
problem. The result of the experiment has been satisfactory compared with other design methods using genetic algorithms.
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1. Introduction

Fuzzy theory has been developed by L. A. Zadeh in 1965, It
has been used successfully in many control areas[l]. Fuzzy
logic controllers(FLC’s) are used when the processes are 100
complex for analysis by conventional mathematical
techniques{14-17).

In traditional methods, experience and control knowledge of
human experts are needed to design fuzzy controllers. However,
it takes much time and cost. In addition, the traditional design
process requires a lot of the trial-and-error, because the expert’s
knowledge is difficult to make concrete. Therefore, many
automatic design methods have been proposed, e.g. fuzzy neural
networks, fuzzy clustering methods, and gradient decent
method{1,8]. The research based on GA’s is now gaining
interests[2-7,9-13].

In most automatic design methods for an FLC, the
optimization of both the membership functions and the control
rules of the FLC is required. The optimization is still dependent
on the experience and knowledge of human experts{5-7,13].
That is, the ultimate associations among variables are derived
from the knowledge of domain experts, who understand the
semantics of the rules, Hence, either the linguistic terms or the
fuzzy rules of an FL.C are initially given by the expert’s
knowledge.

In this paper, we propose an automatic design method for
fuzzy controllers using genetic algorithms. In the method, we
proposed an effective encoding scheme, a new crossover
operator, and a new mutation operator. In the proposed method,
the maximum number of linguistic terms is restricted to reduce
the number of combinatorial fuzzy rules in search space. When
manipulating linguistic terms, the corresponding fuzzy rules are
modified automatically. The proposed method is applied to the
cart centering problem. Regarding the control speed and the
probability of successful controls, the result of the experiment is
satisfactory, compared with other design methods using genetic
algorithms,

This paper is organized as follows. In Section 2, we explain
the related works. In Section 3 the effective encoding scheme
and the new genetic operators are proposed. In Section 4, we
apply our method to the cart centering problem to demonstrate

its performance. Finally, we conclude and discuss about further
works.

2. Related Works

2.1 Fuzzy Logic Controllers(FLC’s)

Fuzzy control is one of the most successful areas in the
application of fuzzy theory. FLC’s are excellent alternatives to
the conventional control methodology when the processes are
too complex for anmalysis by conventional mathematical
techniques. An FL.C consists of four components: a fuzzifier, an
inference engine, a defuzzifier, and 2 knowledge-base. In this
paper, the Mamdani’s min-max operator in inferencing and the
center of gravity as the defuzzification are used{1].

In many cases, the performance of FLC’s depends on a
designed knowledge-base in which membership functions and
fuzzy control rules are defined. In traditional method, the
knowledge-base is determined by experience and control
knowledge of human experts. However, it is a trial-and-error
process and takes much time and cost. Therefore, the automatic
design method for FLC’s, which can generate better both
membership functions and control rules without human experts,
is desirable.

2.2 Genetic Algorithms(GA’s)

Genetic algorithms are search algorithms based on the
mechanics of natural selection and natural genetics. They can be
considered as a general-purpose optimization method and have
been successfully applied to search, optimization and machine
learning tasks[4]. In GA’s, a population of chromosomes are
formed, each representing a possible solution to the problem.
The population will undergo operations similar to genetic
evolution, namely reproduction, crossover and mutation.

The following is a pseudo-code that describes a procedure of
genetic algorithms.

Procedure genetic algorithm
{ P(t) : a population at generation t}
t<—0
initialize P(t)
evaluate P(t)
while ( "not termination-condition" ) do
et +1
select P(t) from P(t-1)
alter P(t)
evaluate P(t)

2.3 Other approaches to design FLC’s using GA’s

In the previous approaches using GA’s, they applied GA’s to
tune the parameters of FLC’s and fuzzy neural networks([8].
Recent approaches are to design FLC’s directly, that is, to
design membership functions and control rules. In these
approaches, the one generated either membership functions or
fuzzy rules[6,7,13], and the other designed both{5, 9,10].
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Karr [6,7] used GA’s to alter just the shape of fuzzy sets used
in a given rule base. Thrift[13] used GA’s to learn a rule table
for given membership functions. Those approaches showed that
GA’s could reduce the development time and cost, and the
designed FLC’s outperformed human designed FLC’s.

Takagi and Lee[10] determined membership functions and
the number of fuzzy rules and the shape of fuzzy sets using
GA’s. Carse er «i[3] used a real coded encoding scheme based
on control rules which were composed of fuzzy numbers for
input/output variables. They considered the relationship
between membership functions and control rules because it was
based on control rules.

As mentioned above, the previous works had some problems:
(1) FLC’s were to be still handled by human experts, (2)might
increase the search space because of the long chromosomes, and
(3) didn’t consider the features of fuzzy controllers. To
overcome those defects, we propose the method that can design
both membership functions and control rules simultaneously. In
the proposed method, we proposed an effective encoding
scheme and new genetic operations considering the feature of
FLC’s. Our method can generate and modify membership
functions and control rules.

3. Proposed Method

3.1 Encoding schemes

In order to design FLC’s using GA’s, encoding schemes by
which an FLC is represented into a string(individual) are
required. In this paper, FLC’s are encoded in two parts: the part
representing membership functions and the part representing
control rules(rule table). For the purpose of easy explanations,
we consider FLC’s with two inputs @ and b, and one output c,
which are used frequently in practices.

3.1.1 Encoding scheme for membership functions

In this paper, linguistic terms in each variable are either
triangular fuzzy numbers or trapezoidal fuzzy numbers in the
both end sides of the universe of discourse. A triangular fuzzy

number, which is the /* linguistic term, A;, can be represented
by the center position, A’ and the positions of both end
sides on its base, A4 and A" The chromosome
representing membership functions is coded in a binary string,

consisting of two ordered sets of genes, L and X (see Fig. 1).
The set L determines 4™ ’s, the center positions of triangular

numoer 8§ on € (o) 1scourse
fuzzy be ’ th f di
(L, ,L,, ] ThesetK represents A/ and A" which

are the positions of the both end sides on the base. The lengths
of the set L and X, denoted by |L| and |X], mean the number of
elements(genes) in set L and K respectively.

In the set L, a linguistic term A4, is determined by setting the
value of gene to 1. The position of gene corresponds to the
center position 4" . In the case of trapezoidal fuzzy numbers,
all of genes corresponding to upper side of trapezoid are set to 1.
The longer the length of the set L is, the higher the resolution

presenting the positions on the universe of discourse is. When
the universe of discourse is [f w oL ] » the resolution of

N S
the set L is ——E—]-_T—— .
Using the resolution, we can calculate the center position,

A7 of liguistic term A4, by Eq. (1).
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Fig. 1 Encoding for a membership function

Fig.1 shows an encoding example for membership functions
in which the length of set L is 35, and the number of linguistic
terms is 5.

The positions of both left and right end sides, 4" and
A" can be determined by ratio of two values, s and t. s is the
distance between the center position A7 of the i linguistic
term and the center position A% of the neighboring lingustic
term A, . ! is the distance between 47" and the position of
right end point, A7 .

In the proposed encoding schemes, the ratio t/s is determined
by the set K,(0111 in Fig. 1). When the value of the j* gene in
the set X is p; the ratio #/s is calculated by Eq. (2)

|X -1

1 - je
Then, using the ratio /s, 4« and 4 can be calculated by
Eq. (3).
A'"!"" = 4 c:lnm__ /1,.“"'"))( %

A'kﬂ = 4::»:" - A,“m" - A':—:;mr) x %

€))

3.1.2 Encoding scheme for control rules

Generally, all of control rules combined by two input
variables, are represented in the form of a rule table. In this
paper, a chromosome representing control rules is formed by
going row-wise in a rule table like Fig. 2. Each gene represents
a control rule, that is, one cell in a rule table. The value of a

gene is the value of i, the subscript of the i linguistic term C,

in the output variable c¢. The length of a chromosome is variable,
because each number of the linguistic terms in two input
variables a and b is not fixed.

abBu Bl Bl B1
A1G1C |G |G GG G GG GG GGG
Ao e 6o O ez 1[211]2]2]3]
41616 14 (¢,

@ ®)
Fig. 2 Encoding for control rules

For example, Fig. 2 shows that a rule table(a) is encoded into
a chromosome 001211121223 (b).

3.1.3 Encoding scheme for fuzzy controllers

In order to encode fuzzy controllers, we integrate the
proposed encoding schemes for membership functions and
control rules, and encode in a string like Fig. 3. Then, an
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Fig. 3 Encoding for a fuzzy controller

individual represents a fuzzy controller with membership
functions for 3 variables and control rules.

The proposed encoding scheme has some advantages
compared with real coded methods. One of them is to reduce the
whole search space. But the resolution of our encoding schemes
is lower than that of real coded methods. Although we can have
high resolution as increasing the length of the set representing
membership functions, as the results, the search space is
increased accordingly. This is why the maximum number of
linguistic terms depends on the length of chromosomes, and the
number of control rules is a product of the number of linguistic
terms in two input variables. In the proposed method, we limit
the maximum number of linguistic terms in input-output
variables under a reasonable number. Then, the maximum
number of linguistic terms has no relation with the
resolution(the length of the set L). The resolution can be higher
without the increase of the search space.

The proposed encoding scheme cannot use the initialization
process of a simple genetic algorithm[4]. The initialization
process for our proposed encoding scheme is following.

First, it determines the number of linguistic terms in each
variable. It must be less than the restricted number. Then in the
chromosome presenting membership functions, the positions of
the genes are selected randomly and the genes are set to 1 as
many as the determined number. Set K, by which the base of
linguistic terms is determined, is initialized and operated in the
same way used in a simple genetic algorithm. After initializing
membership functions, the chromosome representing control
rules is initialized randomly. The value of genes in the
chromosome is within the number of linguistic terms in output
variable.

The initialized population will undergo the proposed
crossover and mutation operations described in next.

3.2 Crossover

To maintain the correspondency between membership
functions and control rules, we propose a new crossover
operator. By this crossover operator, linguistic terms and control
rules related with them are exchanged with each other. This
prevents the loss of meaningful relationships between
membership functions and control rules, and provides with a
direction to generate a fuzzy controller with a good
performance.

The followings are the notations used in the algorithm for
CTOSsOver operation.

ng.n,,n,: the number of lingwistic terms in vanables a, b, ¢ at the
individual 1, respectively
n.,n,n.: the number of lingustic terms in variables a, b, ¢ at the
individual 2, respectively
4, :the  linguistic term in variable a at the individual 1
4, the i* linguistic term in variable a at the individual 2
L(0:1-1) : an array presenting the set of genes whose length is /
L(i) : the value of the /™ gene in an array L(0:/-1)
AL, 0,i-1) : a function that returns the number of 7 satisfying L(i}=1 in
an array L(0:1-1)
h(L, j) : a function that retumns the position of gene, corresponding to
the ;™ linguistic term, in an array L(0:/-1)
p - the number of genes that are exchanged on [ at the individual 1
q : the number of genes that are exchanged on [/ at the individual 2
G(0:p-1) : an array representing the set of genes, G that are exchanged
on 7 atthe individual 1
G(0:¢-1) : an array representing the set of genes, G’ that are exchanged
on 1’ atthe individual 2
R(0:n,—1X0:n,~1)  two dimensional array representing the rule table
in the individual 1
: two dimensional array representing the rule
table in the individual 2
R(iXy) : the value(subscript) of linguistic term in the consequent part
of therule “If g is4,and b is B in R(0: m ~1)0: n, -1)
R'(iXj) : the value(subscript) of linguistic term in the consequent part
of therule “Ifais A’ andbis B " in Ro: 7, —1)0:nm) 1)

R'©Q:n,~1X0:n, -1)

Next, the algorithm for the crossover operation is described.
[Step 1] determine one variable of a, b, c. let a be selected.
[Step 2] determine 7, the number of linguistic terms exchanged

[Step 3] exchange » linguistic terms A 1Ay in the individual
1 with » linguistic terms 4, -4y, 10 the individual 2.
p and g of genes, which are in the right most side of the
set L, and L, (see Fig. 4) at the individual 1 and 2, are
exchanged. p and ¢ are calculated by following
equations:
p=lL,l-h(Lyn,—n-1)+1, @

g=lLyl-h(Ly,n,-n-1)+1

The following is the algorithm for the crossover for
membership function.
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Procedure CrossoverM F(GG "pg )
Ay G(O:p-1),G'(0:q-1)
If p=gq then

Jor i from 0 1 g-1 do
G'(i) « G (i)
else If p < g then
Jor i from 0 r0g -1 do
G'(i)« ©
ie 0
while i< p
do

if G(i)=1 then
G'lg/px(i+0.5)]e
i+ i+
ebe  {p>q)
i ©
right « -1
while i< g
do
left « right +\
right e« pilgx(i+1)-1
oSG, iefi ,righh ) =0 then
G'(i)« 0O
fe i+
else
k « [f(G,left ,right )

for j from O 10 k-1 do
G'(i+ j)e 1
ie i+ k

[Step 4] When a input variable(a) is selected, control rules
related to the linguistic terms participating in the
crossover operation are changed. For a linguistic term
A(n,-nsecs<n,-1), R()(0:n,-1) presenting n,
control rules in the individual 1 are exchanged with
R'(€)(0:n, 1) of n, control rules in the individual
2. According to the following algorithm, the control
rules are exchanged respectively.

Array: g(cX0:nn, —1),g(0:m -1)
for i from 0 to n,~1 do
Jor j from 0 to n,—1 do
g(n, i+ j)« R(cXi)
for j from 0 to0 n,—1 do

Wy U+
k
gU) g(%
nb
for j from 0 to n,~1 do

R'(cxj')«-[:#xg'u)]

4

When a crossover operation is occurred in output
variable ¢, the changes of control rules are not

needed.
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Fig. 4 Before the crossover operation for membership functions
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Fig. 5 After the crossover operation for membership functions

Fig. 4 and Fig. 5 show before and after the crossover
operation, which is occurred between the individual 1 and 2.

3.3 Mutation
3.3.1 Mutation for membership functions

When a mutation for membership functions is occurred, the
value of gene representing the center position of a linguistic
term is changed from O to 1 or from 1 to 0. According to change
of the gene value, a new linguistic term is generated or an
existing linguistic term is eliminated. To maintain the proposed
encoding schemes, the number of linguistic terms after a
mutation operation can not exceed over the restricted number.

When a mutation is occurred at the p® gene in an input
variable a, the linguistic term under the influence(generation or
elimination) of the gene is assumed as the m™ linguistic term,
A4, .
If a mutation is occurred between 4 and A4_, a new
linguistic term becomes an 4. The value of i in originally
existing A4, ischanged as follows.

) {i+l if iz m,
i=
i

otherwise
If an existing linguistic term 4 _ is eliminated, the value of i
in 4, is changed as follows.
o i fi<m-1,
t= {iv 1 y i>m
The mutation operation for membership functions causes the
change of control rules related with the linguistic term 4 .
When a mutation is occurred on the set L _(see Fig. 6) in an

input variable a, the rule table is modified(new control rules are
generated or existing rules are eliminated).
The notations used in the algorithm are as follows:

n,.n, - the number of linguistic terms in vaniable a and b before the

mutation operation for membership functions
n,,n,  the number of linguistic terms in variable @ and b afier the

mutation operation for membership functions
p . the position of gene in which a mutation is occurred
m : the value(subscript) of the linguistic term influenced by L(p)
L(0:1-1) : an armray presenting the set of genes whose number is !
R(0:7n, ~1X0:n,~1) : two dimensional array representing the rule
1able before the mutation operation
R0 n,-1X0:n) —1)" two dimensional array representing the rule
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table after the mutation operation
R(i)) * the value(subscript) of linguistic term in the consequent part
of the rule “Ifa is4,and bis B at R(o: n, ~1)0:n, 1)
RGXj) - the value(subscript) of linguistic term in the consequent
part of the rule “If ais 4";and bis B'” at R0 :n) 10 : ;- 1)

The following algorithm describes the procedure for the
change of control rules

Array L(0:1-1),R(0:n, =1%X0:n,-1),R'(0:n, —-1X0:n, -1)
If L(p)=1 then
L(py« 0
n, «n,-1
n, N,
for i from O to n,
for j from 0 w0 n,
if i<m then R'(GX )« RGXJ)
else R'(iIXJj)« R(Gi+1XJ)
else
L(p)«1
n, < n,+1
n, « n,
for i from O to n,
Jor j from 01 n,
if i<m then R'(XJ) <« RUXJ)

else if i=m then R'(i)(j)<—[%(R(Hl)(jHR(i)(j))j
else R'(IXJ)« RG-1XJ)

When a mutation for membership functions in output variable
¢ is occurred, the value of /s in linguistic terms C,'s is
changed in the same manner as mentioned above. Then, existing
C, ’sin the original rule table are altered to the changed ones.

A 4 ﬁ R(0:2)0:3)
i ad| B, 1B 1B, |8
41 GG |C | C
i 41 clc ¢ Tg,
; 41 GG G [ &

500000001 0000BD0001 000001 11] - - -
=13
“I

(4

A A=A 4 4

C2
41 clc ¢, |6
00000100000002p000100000111 - --Joo 1 2[Ffi12l11121223 ]
=17
L

‘¢

Fig. 6 mutation for membership functions

Fig. 6 shows that a mutation is occurred at the 13™ gene on
L, and a new linguistic term 4, and the related four rules are

generated.

3.3.2 Mutation for a control rule

The value of genes representing control rules is determined
by the value of / and the number of C,'s . The mutation for a
control rule changes the value of gene, from i to j randomly.
This means the consequent part of a control rule is changed
from C, to C, in which is the subscript of other linguistic

term C (i = j) in an output variable c.

o4 BB B | B _— a4 BB B |B
4] Cu|Co |C. | C,| toeemane [ A|CC [C ]G
4, c\ C, C1 Cz :> 4 Cu [ C\ Cz
L felie (oG 4 [%,]C, [C, |G

R3S EFASENENNENEE PEFAE

Fig. 7 mutation for a control rule

oM T2 igl21213

Fig. 7 shows that a mutation is occurred from 1 to 2 at the 9"
control rule. It means that the consequent part of the control rule
“If ais A,and b is B,, then ¢ is C,”, is changed to “c is C,”.

4. Experiments and Results

4.1 Cart centering problem

v

c—>

m <:|F
Oy 0

X

Fig. 8 Cart centering problem

In this experiment, a cart with mass m moves on one
dimensional frictionless track(Fig. 8). The input variables for
this problem are the location x and the velocity v of the cart. The
output variable is the applied force, F. The objective is to find a
fuzzy controller which can provide a force F' which will move
the cart to x=0 and v=0, from an arbitrary initial position and
velocity in minimum time. The cart is simulated by the
following equations of motion :

Xt +7)=x1)+(0)

(5)
Wt +7)=W1) +‘r£(2
m

To compare with other’s experiments([3]{13]), we choose
time step r=002ec and m=20kg. The range of applied force

Fis -25N<F<25N.

4.2 Results

Fitness evaluation is identical to that used by Thrift[13] and
Carse[3]. A simulation of the cart is run for 500 time
step(10sec) with starting points (v, )seclected from 25
equally spaced positions in the range (-2.5,-2.5) to (2.5,2.5). The
fitness is measured as (10-T) where T is the average time for the
cart to reach the goal state such that max(x|,v|)<0.5. If more
than 10sec of simulated time are required, it is considered as a
failure of control and the fitness returned is 0.

The parameters for the genetic algorithm are as follows:

Size of poputation 1100
Number of total generations - 100
Probability of crossover 1 0.7
Probability of mutation . 0.03
The length of set L o 21
Max. number of linguistic terms -9

where the set L means a set of genes presenting membership
functions in each variable.

To compare the result of the proposed method with Thift[13]
and Carse[3], we evaluated the best fuzzy controller with 100
random starting point in the range (-2.5,-2.5) to (2.5,2.5). We
iterated an experiment 10 times. As the results, the cart was
centered with about 98.4% of the rate of the successful controls
and an average of 2.97sec. The following table represents the
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comparison for the average control time among the 3 methods.

Method Thrift[13] | Carse[3] | Proposed
Average cortrol 328 790 297
time(sec) ) ) )

The proposed method generates membership functions and
control rules simultaneously, compared with Thrift[13] which
generated only control rules. Also, the performance of proposed
method is better than that of Thrift and similar to that of Carse.
However, our method designs membership functions in much
understandable forms and covers the whole range of the
universe of discourse. Fig. 9 and Fig. 10 show membership
functions in each variable and a rule table designed by the
proposed method, respectively.
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-4 2 [ 2 4
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Ok do o
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O T |

(c) membership functions in a input variable F'
Fig. 9 membership functions in the cart centering problem
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Fig. 10 designed rule table

5. Conclusions

In this paper, we have proposed an automatic design method
for fuzzy controllers using genetic algorithms. The proposed
method can generate both membership functions and control
rules simultaneously. In the proposed method, we also proposed
the effective encoding scheme and new genetic operators. The
proposed encoding scheme reduces the search space by
eliminating the relationship between the resolution and the
maximum number of linguistic terms. In the proposed genetic
operations, the comresponding fuzzy rules are modified when
manipulating linguistic terms. The proposed method was
applied to the cart centering problem and showed that the
control speed and the probability of successful controls are

desirable.
For further works, fine tuning methods for the designed
fuzzy controllers will be studied to increase their performance.
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