• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.025 seconds

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Design of Optimized Fuzzy Cascade Controller Based on HFCGA for Ball & Beam System (볼빔 시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적 퍼지 Cascade 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.391-398
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. The displacement change the position of ball leads to the change of the angle of the beam which determines the position angle of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling factors) of each fuzzy controller using HFCGA. The inner controller controls the position of lever arm which corresponds to the position angle of a servo motor and the outer controller decides the set-point value of the inner controller. HFCGA is a kind of parallel genetic algorithms(PGAs), and helps alleviate the premature convergence being generated in conventional genetic algorithms (GAs). For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation (진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화)

  • Park, Keon-Jun;Lee, Bong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Design of Fuzzy-PI Controllers for the Gas Turbine System (가스터빈 시스템을 위한 퍼지-PI 제어기의 설계)

  • Kim, Jong-Wook;Kim, Snag-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1013-1021
    • /
    • 2000
  • This paper suggests fuzzy-PI controllers for a heavy-duty gas turbine. The fuzzy-PI controllers are designed to regulate rotor speed and exhaust temperature of the gas turbine. The controller gains are tuned by genetic algorithm(GA). This paper also proposes a new fitness function of GA using a desired output response. The suggested controller is compared with previous controllers via simulations and it is shown that the rotor speed variation of our controller is smaller than those of previous ones.

  • PDF

Vibration Control of Flexible Nonlinear System using GA based Fuzzy Logic Controller

  • Heo, Hoon;Han, Jungyoup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.142-146
    • /
    • 1995
  • In the paper, Fuzzy Logic Controller(FLC) that determines its optimal coefficients using Genetic Algorithms is considered. It is also applied to the inverted pendulum problem known popularly as a standard plant. Flexibility of the inverted pendulum has been taken into account. In the results, Fuzzy Logic Controller under consideration successfully controls both rigid mode and flexible mode. The rule base of Fuzzy Logic Controller is automatically tuned using not only trial-error method but also Genetic Algorithms.

  • PDF

Fuzzy Data Fitting With Genetic Algorithm (유전자 알고리즘을 이용한 Fuzzy Data Fitting)

  • 김성용;한준희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.479-481
    • /
    • 1998
  • Noise가 있는 data에서 shape나 parameter를 찾았을 때 일반적으로 Hough transform이나 regression을 적용한다. Hough transform은 parameter space의 차수가 커지면 memory 문제가 존재하며, regression 모델은 한 개의 변수를 다른 변수의 함수로 가정하여 error를 최소화하여 데이터중 1 set의 parameter만 존재한다는 가정을 하여야 하는 문제점이 있다. 본 논문에서는 이러한 두 방법의 단점들을 보완하며, Fuzzy개념을 도입한 data fitting 방법을 제안하였다. 이 문제는 genetic algorithm을 도입하여 data를 Fuzzy membership을 갖는 것으로 가정한 최적화 문제로 해결하였다. 직선과 평면에 대한 실험 결과를 보인다.

  • PDF

Controller Design Using a Fuzzy Theory and Genetic Algorithm (퍼지이론과 유전알고리즘의 합성에 의한 제어기설계)

  • Oh, Jong-In;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.645-647
    • /
    • 1998
  • A position control algorithm for a inverted pendulum is studied. The proposed algorithm is based on a fuzzy theory and a steady state genetic algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is a optimization algorithm, tunes the input-output membership parameters and fuzzy rules automatically. The computer simulation to control a inverted pendulum is presented to illustrate the approaches.

  • PDF

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스-메시 유전 알고리즘에 의한 퍼지 모델링)

  • 최종일;이연우;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

Parallel Genetic Algorithm using Fuzzy Logic (퍼지 논리를 이용한 병렬 유전 알고리즘)

  • An Young-Hwa;Kwon Key-Ho
    • The KIPS Transactions:PartA
    • /
    • v.13A no.1 s.98
    • /
    • pp.53-56
    • /
    • 2006
  • Genetic algorithms(GA), which are based on the idea of natural selection and natural genetics, have proven successful in solving difficult problems that are not easily solved through conventional methods. The classical GA has the problem to spend much time when population is large. Parallel genetic algorithm(PGA) is an extension of the classical GA. The important aspect in PGA is migration and GA operation. This paper presents PGAs that use fuzzy logic. Experimental results show that the proposed methods exhibit good performance compared to the classical method.