• 제목/요약/키워드: genetic algorithm(GA)

검색결과 1,520건 처리시간 0.033초

유전알고리즘과 DNA 코딩을 이용한 Numeric 패턴인식 (Numeric Pattern Recognition Using Genetic Algorithm and DNA coding)

  • 백동화;한승수
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.37-44
    • /
    • 2003
  • 본 논문은 DNA coding 방법과 Genetic Algorithm(GA)을 사용하여 numeric(0~9) 패턴인식 성능을 비교 평가하였다. 이진스트링의 개체 집단 위에서 모의진화를 일으켜 효율적으로 최적 해를 탐색하는 GA와, 생체 분자인 DNA를 계산의 도구 및 정보 저장도구로 사용하며, Adenine(A), Cytosine(C), Guanine(G), Thymine(T)등의 4가지 염기를 사용하는 DNA coding 방법을 이용하여 numeric 패턴인식을 수행하였다. DNA coding 방법과 GA의 성능을 비교 평가하기 위해서 selection, crossover, mutation 등의 GA연산자를 DNA coding에 동일하게 적용하였다. 실험결과, DNA coding 방법은 GA보다 효과적으로 패턴인식을 수행하였다. GA에 비해 DNA coding 방법의 장점은 스트링의 길이가 가변적이고 해의 중복성을 가지며, 4가지 염기를 이용하기 때문에 해 표현이 다양함을 가지고 있다.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Genetic Algorithm과 Expert System의 결합 알고리즘을 이용한 직구동형 풍력발전기 최적설계 (Optimal Design of Direct-Driven Wind Generator Using Genetic Algorithm Combined with Expert System)

  • 김상훈;정상용
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.149-156
    • /
    • 2010
  • In this paper, the optimal design of a wind generator, implemented with the hybridized GA(Genetic Algorithm) and ES(Expert System), has been performed to maximize the AEP(Annual Energy Production) over the whole wind speed characterized by the statistical model of wind speed distribution. In particular, to solve the problem of calculation iterate, ES finds the superior individual and apply to initial generation of GA and it makes reduction of search domain. Meanwhile, for effective searching in reduced search domain, it propose Intelligent GA algorithm. Also, it shows the results of optimized model 500[kW] wind generator using hybridized algorithm and benchmark result of compare with GA.

유전자 알고리듬을 이용할 대량의 설계변수를 가지는 문제의 최적화에 관한 연구 (A Study of A Design Optimization Problem with Many Design Variables Using Genetic Algorithm)

  • 이원창;성활경
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.117-126
    • /
    • 2003
  • GA(genetic algorithm) has a powerful searching ability and is comparatively easy to use and to apply as well. By that reason, GA is in the spotlight these days as an optimization skill for mechanical systems.$^1$However, GA has a low efficiency caused by a huge amount of repetitive computation and an inefficiency that GA meanders near the optimum. It also can be shown a phenomenon such as genetic drifting which converges to a wrong solution.$^{8}$ These defects are the reasons why GA is not widdy applied to real world problems. However, the low efficiency problem and the meandering problem of GA can be overcomed by introducing parallel computation$^{7}$ and gray code$^4$, respectively. Standard GA(SGA)$^{9}$ works fine on small to medium scale problems. However, SGA done not work well for large-scale problems. Large-scale problems with more than 500-bit of sere's have never been tested and published in papers. In the result of using the SGA, the powerful searching ability of SGA doesn't have no effect on optimizing the problem that has 96 design valuables and 1536 bits of gene's length. So it converges to a solution which is not considered as a global optimum. Therefore, this study proposes ExpGA(experience GA) which is a new genetic algorithm made by applying a new probability parameter called by the experience value. Furthermore, this study finds the solution throughout the whole field searching, with applying ExpGA which is a optimization technique for the structure having genetic drifting by the standard GA and not making a optimization close to the best fitted value. In addition to them, this study also makes a research about the possibility of GA as a optimization technique of large-scale design variable problems.

병렬 유전 알고리즘 기반 meta-유전 알고리즘을 이용한 교차율과 돌연변이율의 최적화 (Optimization of Crossover and Mutation Rate Using PGA-Based meta-GA)

  • 김문환;박진배;이연우;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper we propose parallel GA to optimize mutation rate and crossover rate using server-client model. The performance of GA depend on the good choice of crossover and mutation rates. Although many researcher has been study about the good choice, it is still unsolved problem. proposed GA optimize crossover and mutation rates trough evolving subpopulation. In virtue of the server-client model, these parameters can be evolved rapidly with relatively low-grade

적응형 유전알고리즘의 실험적 비교 (An Experimental Comparison of Adaptive Genetic Algorithms)

  • 윤영수
    • 한국경영과학회지
    • /
    • 제32권4호
    • /
    • pp.1-18
    • /
    • 2007
  • In this paper, we develop an adaptive genetic algorithm (aGA). The aGA has an adaptive scheme which can automatically determine the use of local search technique and adaptively regulate the rates of crossover and mutation operations during its search process. For the adaptive scheme, the ratio of degree of dispersion resulting from the various fitness values of the populations at continuous two generations is considered. For the local search technique, an improved iterative hill climbing method is used and incorporated into genetic algorithm (GA) loop. In order to demonstrate the efficiency of the aGA, i) a canonical GA without any adaptive scheme and ii) several conventional aGAs with various adaptive schemes are also presented. These algorithms, including the aGA, are tested and analyzed each other using various test problems. Numerical results by various measures of performance show that the proposed aGA outperforms the conventional algorithms.

Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network

  • Habibi-Yangjeh, Aziz;Pourbasheer, Eslam;Danandeh-Jenagharad, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.833-841
    • /
    • 2008
  • Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 48.18 and $12.77{^{\circ}C}$, respectively. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = $40.7{^{\circ}C}$). The improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations with the principal components.

유전알고리즘을 이용한 이동로봇의 경로계획 및 충돌회피에 관한 연구 (A study on path planning and avoidance of obstacle for mobile robot by using genetic algorithm)

  • 김진수;이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1193-1196
    • /
    • 1996
  • Genetic algorithm(GA) is useful to find optimal solution without any special mathematical modeling. This study presents to search optimal path of Autonomous Mobile Robot(AMR) by using GA without encoding and decoding procedure. Therefore, this paper shows that the proposed algorithm using GA can reduce the computation time to search the optimal path.

  • PDF

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.

퍼지 논리를 이용한 병렬 유전 알고리즘 (Parallel Genetic Algorithm using Fuzzy Logic)

  • 안영화;권기호
    • 정보처리학회논문지A
    • /
    • 제13A권1호
    • /
    • pp.53-56
    • /
    • 2006
  • 유전 알고리즘은 자연 선택과 유전적 성질에 기반을 둔 알고리즘으로 기존 방법으로는 쉽게 해결할 수 없는 어려운 문제에서도 성공적으로 적용되었다. 기존의 유전 알고리즘은 해 집단이 큰 경우 시간이 많이 걸리는 문제점이 있다. 병렬 유전 알고리즘은 이러한 문제를 해결하기 위하여 제안된 기존의 유전 알고리즘의 확장이라 할 수 있다. 병렬 유전 알고리즘에서 중요한 요소는 이주와 유전 연산으로 이를 적절하게 설계함으로서 좋은 결과를 얻을 수 있다. 본 논문에서는 퍼지 논리를 이용하여 기존의 병렬 유전 알고리즘을 개선하고자 한다.