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Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal compo
nent-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting 
point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each 
compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in 
the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the 
best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s 
as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the 
prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models 
are 48.18 and 12.77 °C, respectively. Comparison of the results obtained by the models reveals superiority of 
the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = 40.7 °C). The 
improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations 
with the principal components.
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Introduction structure to a wide variety of physical, chemical, biological
(including biomedical, toxicological, ecotoxicological) and 

Melting point is a fundamental physical property of 
organic compounds, which has found wide use in chemical 
identification, as a criterion of purity and for the calculation 
of other important physicochemical properties such as vapor 
pressure and aqueous solubility.1,2 The solubility of a 
compound in water is strongly correlated with its melting 
point. An estimate of the water-solubility of a compound 
before it is synthesized, or available in sufficient purity for 
analytical measurements, would be most useful.3 Adequate 
aqueous solubility is necessary for a compound to be trans
ported to the active site within an organism. As noted above, 
melting point affects solubility, and solubility controls 
toxicity in that, if a compound is only poorly soluble, its 
concentration in the aqueous environment may be too low 
for it to exert a toxic effect.4,5 Thus, it would be helpful to be 
able to estimate the melting point of a compound from its 
chemical structure.6,7 Prediction methods for melting point, 
mainly can be categorized as property-property relationship 
(PPR), group contribution, and quantitative structure-pro
perty relationship (QSPR).8,9 Comprehensive reviews of the 
subject reveal that many studies involved hydrocarbons and 
homologous compounds.10-12 This is because of the diffi
culty of melting point prediction for various organic com
pounds, since the numerous factors that control it are not 
easy to quantify.

The prediction of physicochemical and biological proper- 
ties/ activities of organic molecules are the main objective of 
quantitative structure-property/activity relationships (QSPRs/ 
QSARs). The QSPR/QSAR models now correlate chemical

technological properties.13-17 QSPR/QSAR models are 
obtained on the basis of the correlation between the 
experimental values of the property/activity and descriptors 
reflecting the molecular structure of the compounds. To 
obtain a significant correlation, it is crucial that appropriate 
descriptors be employed. A wide variety of molecular 
descriptors has been reported for using in QSPR/QSAR 
models.18 However, as the number of descriptors (variables) 
increases, the model becomes complicated, and its inter
pretation is difficult if many variables are used in modeling. 
Therefore, the application of these techniques usually 
requires variable selection for building well-fitted models. A 
better predictive model can be obtained by ortogonalization 
of the variables by means of principal component analysis 
(PCA).19,20 The principal component analysis was used to 
compress the descriptor groups into principal components 
(PC’s). In order to reduce the dimensionality of the 
independent variable space, a limited number of PC’s are 
used.21 Hence, selecting the significant and informative PC’s 
is the main problem in all of the PCA-based calibration 
methods.22-25 Different methods have been addressed to 
select the significant PC’s for calibration purposes. The 
simplest and most common one is a top-down variable 
selection where the PC’s are ranked in the order of 
decreasing eigenvalues and the PC’s with highest eigenvalue 
is considered as the most significant one and, subsequently, 
the PC’s are introduced into the calibration model. However, 
the magnitude of an eigenvalue is not necessarily a measure 
of its significance for the calibration.25 In the other method,
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which is called correlation ranking, the PC’s are ranked by 
their correlation coefficient with the property and selected 
by the procedure discussed for eigenvalue ranking.22,23 
Better results are often achieved by this method. Recently, 
genetic algorithm (GA) has been applied for the selection of 
the most relevant PC’s instead of the older methods. Com
parison of the results obtained using GA principal compo
nent selection with the two above-mentioned methods shows 
that GA gives a better result and close to the correlation 
ranking.26-28 GA is a stochastic method to solve optimization 
problems applying evolution hypothesis of Darwin and 
different genetic functions, i.e., cross-over and mutation.29,30 
Genetic algorithm is robust, global and generally more 
straightforward to apply in situations where there is little or 
no a priori knowledge about the process to be controlled.29

Artificial neural networks (ANNs) have become popular 
in QSPR/QSAR models due to their success where complex 
non-linear relationships exist amongst data.31,32 An ANN is 
formed from artificial neuron, connected with coefficients 
(weights), which constitute the neural structure and are 
organized in layers. The layers of neurons between the input 
and output layers are called hidden layers. Neural networks 
do not need explicit formulation of the mathematical or 
physical relationships of the handled problem. These give 
ANNs an advantage over traditional fitting methods for 
some chemical applications. For these reasons in recent years, 
ANNs have been applied to a wide variety of chemical pro- 
blems.33-42

Very recently, QSPR models have been applied for pre
diction of the melting point of 323 set of drug-like com- 
pounds.43 Ability of these models for prediction of the 
melting point is poor (for example, root-mean square error 
of the models is approximately 40.7 °C). In order to predict 
accurately melting point of the same compounds, in the 
present work, principal component-genetic algorithm-multi- 
parameter linear regression (PC-GA-MLR) and principal 
component-genetic algorithm-artificial neural network (PC- 
GA-ANN) models were employed to generate QSPR 
models between the principal components and melting point 
of the compounds and the results were compared with each 
other, the previous work and the experimental values.

Data and Methodology

Data set and theoretical descriptors. Melting points 
were taken from the recently published paper.43 The data are 
mostly for the compounds that are solid at room temperature 
but also include some liquids and gaseous compounds. The 
melting points are spread between -118 and 345 °C. The z- 
matrices (molecular models) were constructed with Hyper- 
Chem 7.0 and molecular structures were optimized using 
AM1 algorithm.44 In order to calculate the theoretical de
scriptors, Dragon package version 2.1 was used.45 For this 
propose the output of the HyperChem software for each 
compound fed into the Dragon program and the descriptors 
were calculated. As a result, a total of 1481 theoretical 
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descriptors were calculated for each compound in data sets 
(323 compounds).

Data pretreatment. The theoretical descriptors were 
reduced by the following procedure: 1) descriptors that are 
constant have been eliminated (292 descriptors). 2) in addi
tion, to decrease the redundancy existing in the descriptors 
data matrix, the correlation of descriptors with each other 
and with melting point of the molecules are examined, and 
collinear descriptors (R> 0.9) are detected. Those of the 
descriptors which have the pair wise correlation coefficient 
above 0.9 and having the lower correlation with melting 
point values are removed from the data matrix (758 descrip
tors). 3) before statistical analysis, the descriptors are scaled 
to zero mean and unit variance (autoscaling procedure). The 
data matrix (431 descriptors) is subjected to principal com
ponent analysis using Matlab software package.46 Multipara
meter linear regression was obtained using spss software.47

Genetic algorithm (GA). To select the most relevant 
principal components, evolution of population was simu- 
lated.48-52 Each individual of the population defined by a 
chromosome of binary values represented a subset of princi
pal components. The number of genes at each chromosome 
was equal to the number of principal components. The 
population of the first generation was selected randomly. A 
gene took a value of 1 if its corresponding principal com
ponent was included in the subset; otherwise, it took a value 
of zero. The number of genes with a value of 1 was kept 
relatively low to have a small subset of principal compo- 
nents,52 that is, the probability of generating 0 for a gene was 
set greater (at least 60%) than the value of 1. The operators 
used here were crossover and mutation. The probability of 
the application of these operators was varied linearly with 
generation renewal (0-0.1% for mutation and 60-90% for 
crossover). The population size was varied between 50 and 
250 for different GA runs. For a typical run, the evolution of 
the generation was stopped when 90% of the generations 
took the same fitness. The GA program was written in 
Matlab 6.5.53

Artifici지 neur지 network (ANN). A feed forward arti
ficial neural network with a back-propagation of error 
algorithm was used to process the non-linear relationship 
between the selected principal components and the melting 
point. The number of input nodes in the ANN was equal to 
the number of PC’s. The ANN models confined to a single 
hidden layer, because the network with more than one 
hidden layer would be harder to train. A three-layer network 
with a sigmoid transfer function was designed. The initial 
weights were randomly selected between 0 and 1. Optimi
zation of the weights and biases was carried out according to 
the resilient back-propagation algorithm. The data set was 
randomly divided into three groups: a training set, a valida
tion set and a prediction set consisting of 195, 64 and 64 
molecules, respectively. The training and validation sets 
were used for the model generation and the prediction set 
was used for evaluation of the generated model. The perfor
mances of training, validation and prediction of models are
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evaluated by the mean percentage deviation (MPD) and root 
mean square error (RMSE), which are defined as follows:

MPD = 100 N 
一N i £

P^^p Pcal 

- -------- ---Pexp (1)

RMSE = (2)

where Piexp and Pical are experimental and calculated values 
of melting point with the models and N denote the number 
of data points. Individual percent deviation (IPD) is defined 
as follows:

Figure 1. Plot of calculated values of the melting point using the 
PC-GA-MLR model versus the experimental values of it for 
training, validation and prediction sets.
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The processing of the data was carried using Matlab 6.5.46 
The neural networks were implemented using Neural Net
work Toolbox Ver. 4.0 for Matlab.54

Results and Discussion

Princip지 component an지ysis. After the elimination of 
the constant and one of the collinear ones, 431 descriptors 
remained from 1481 theoretical descriptors calculated for 
the compounds. The results of application of PCA on the 
descriptors data matrix were shown that 99.9% of the 
variances in the descriptors data matrix are explained by 234 
first PC’s. Therefore, we focused our analysis on these PC’s, 
and the reminders, which are noisy factors, were not consi
dered.

Principal component-genetic algorithm-multiparameter 
linear regression. Obtaining the number of significant 
principal components is the main problem in the PCA-based 
methods. The first 234 principal components (PC’s) were 
found to explain more than 99.9% of variances in the 
original data matrix. As noted previously, not all of the PC’s 
is informative for QSAR/QSPR modeling.25-27 Then, we 
used GA for the selection of the most relevant PC’s instead 
of the older methods. The selected PC’s are PC1, PC2, PC3, 
PC4, PC5, PC6, PC7, PC9, PC15, PC32, PC33, PC36, 
PC37, PC39 and PC86. As can be seen, the selected princi
pal components are not based on their eigenvalue. For 
example, PC9 and PC15 are selected and PC8 is not 
considered in the model. This is due to the fact the infor
mation contents of some extracted PC’s may not be in the 
same direction of the activity data. Multiparameter linear 
correlation of melting point values for 195 compounds in 
training set was obtained using the fifteen principal compo
nents. The calculated values of melting point for the com
pounds in training, validation and prediction sets using the 
PC-GA-MLR model have been plotted versus the experi
mental values of it (Figure 1).

Principal component-genetic algorithm-artificial neural 
network. To process the non-linear relationships exists bet

ween the melting point and the PC’s, the ANN modeling 
method combined with PCA for dimension reduction and 
GA for feature selection was employed. A principal compo
nent-genetic algorithm-artificial neural network (PC-GA- 
ANN) model, which combines the PC’s with ANN, is 
another PC-based calibration technique for non-linear model
ing between the PC’s and dependent variables.25-28 The input 
vectors were the set of PC’s, which were selected by GA, 
and therefore, the number of nodes in the input layer was 
dependent on the number of selected PC’s. In the PC-GA- 
MLR model it is assumed that the PC’s are independent of 
each other and truly additive relevant to the property under 
study. ANNs are particularly well-suited for QSAR/QSPR 
models because of their ability to extract non-linear infor
mation present in the data matrix. For this reason the next 
step in this work was generation of the ANN model. There 
are no rigorous theoretical principles for choosing the proper 
network topology; so different structures were tested in 
order to obtain the optimal hidden neurons and training 
cycles.34-42 Before training the network, the number of nodes 
in the hidden layer was optimized. In order to optimize the 
number of nodes in the hidden layer, several training 
sessions were conducted with different numbers of hidden 
nodes (from one to thirty two). The root mean square error 
of training (RMSET) and validation (RMSEV) sets were 
obtained at various iterations for different number of neurons 
at the hidden layer and the minimum value of RMSEV was 
recorded as the optimum value. Plot of RMSET and 
RMSEV versus the number of nodes in the hidden layer has 
been shown in Figure 2. It is clear that the twenty nine nodes 
in hidden layer is the optimum value.

This network consists of fifteen inputs (including PC1, 
PC2, PC3, PC4, PC5, PC6, PC7, PC9, PC15, PC32, PC33, 
PC36, PC37, PC39 and PC86), the same PC’s in the PC-GA- 
MLR model, and one output for melting point. Then an 
ANN with architecture 15-29-1 was generated. It is note
worthy that training of the network was stopped when the 
RMSEV started to increases i.e. when overtraining begins.
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Figure 2. Plot of RMSE for training and validation sets versus the 
number of nodes in hidden layer.
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Figure 4. Plot of calculated values of the melting point using the 
PC-GA-ANN model versus the experimental values of it for 
training, validation and prediction sets.

Figure 3. Plot of RMSE for training and validation sets versus the 
number of iterations.
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Figure 5. Plot of the residual for calculated values of the melting 
point using the PC-GA-ANN model versus the experimental values 
of it.

The overtraining causes the ANN to loose its prediction 
power.31 Therefore, during training of the network, it is de
sirable that iterations are stopped when overtraining begins. 
To control the overtraining of the network during the 
training procedure, the values of RMSET and RMSEV were 
calculated and recorded to monitor the extent of the learning 
in various iterations. Results showed that overfitting did not 
see in the optimum architecture (Figure 3).

The generated ANN was then trained using the training 
and validation sets for the optimization of the weights and 
biases. For the evaluation of the predictive power of the 
generated ANN, an optimized network was applied for 
prediction of the melting point values in the prediction set, 
which were not used in the modeling procedure (Table 1). 
The calculated values of melting point for the compounds in 
training, validation and prediction sets using the ANN model 
have been plotted versus the experimental values of it in 
Figure 4.

It is clear that the calculated values of melting point are in 
good agreement with those of the experimental values. The 

correlation equation for all of the calculated values of melt
ing point (Mp) from the ANN model and the experimental 
values is as follows:

Mp(cal) = 0.969 Mp(exp) + 4.381 (4)

(R = 0.9850; MPD = 9.326; RMSE = 12.623; F = 10445.99) 

Similarly, correlation of Mp(cal) versus Mp(exp) values in 
the prediction set gives equation (5):

Mp(cal) = 0.972 Mp(exp) + 5.623 (5)

(R = 0.9843; MPD = 9.119; RMSE = 12.767; F =1930.99) 

Plot of the residual for melting point values in the training, 
validation and prediction sets versus the experimental values 
of it has been illustrated in Figure 5. It is clear that the 
propagation of errors in both sides of zero is random. Then 
there is not systematic error in the model.

As a result, it was found that properly selected and trained 
neural network could fairly represent dependence of melting 
point for the drug-like compounds on the PC’s. Then the
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Table 1. Experimental and calculated values of melting point for Table 1. Continued
the drug-like compounds in training, validation and prediction sets Calusing PC-GA-MLR and PC-GA-ANN models along with the No. Compound Experimental Res.
residual for the calculated values by PC-GA-ANN model

rd 51 Meprobamate 104
(PC-GA-ANN)

104.1 -0.1
No. Compound Experimental (PC-GA-ANN) Res. 52 Gentamicin 105 104.9 0.1

— 53 Physotigmine 105.5 88.2 17.3
Training 54 Bupivacaine 107 89.2 17.8

1 Halothane -118 -118.3 0.3 55 Amidopyrine 108 136.4 -28.4
2 Diethyl ether -116.3 -120.2 3.9 56 Acecarbromal 109 105.4 3.6
3 Ethylene oxide -111.3 -112.0 0.7 57 Celiprolol 110 107.8 2.2
4 Chloroform -63.7 -62.3 -1.4 58 Tolnaftate 111 121.1 -10.1
5 Methoxyflurane -35 -35.9 0.9 59 Amphotalide 113 119.7 -6.7
6 Benzyl alcohol -15.3 -14.9 -0.4 60 Valnoctamide 113.5 111.1 2.4
7 Nicotinyl alcohol -7.7 5.1 -12.8 61 Ifenprodil 114 115.5 -1.5
8 Amphetamine 11.3 31.8 -20.5 62 Bamipine 115 104.8 10.2
9 Glyceryl trinitrate 13.5 10.5 3.0 63 Alverine 116 128.1 -12.1
10 Propofol 19 2.2 16.8 64 Pericyazine 116 116.1 -0.1
11 Nikethamide 25 32.1 -7.1 65 Atropine 118 114.8 3.2
12 Ephedrine 36 24.7 11.3 66 Morphazinamide 118.5 91.8 26.7
13 Methyl nicotinate 39 36.7 2.3 67 Chlophedianol 120 125.4 -5.4
14 Trimipramine 45 55.0 -10.0 68 Pridinol 120 99.3 20.7
15 Phencarbamide 48 39.7 8.3 69 Terbutaline 120.5 130.8 -10.3
16 Hyoscine 59 43.4 15.6 70 Capobenic acid 121 124.6 -3.6
17 Prometazine 60 57.5 2.5 71 Propizepine 122 150.0 -28.0
18 Gemfibrozil 61 92.0 -31.0 72 Nadolol 124 117.9 6.1
19 Procaine 61 65.5 -4.5 73 Bamethan 125 114.0 11.0
20 Dichloralphenazone 65.5 67.1 -1.6 74 Nimodipine 125 126.3 -1.3
21 Etomidate 67 80.3 -13.3 75 Mecloqualone 126 153.3 -27.3
22 Lignocaine 67.5 79.9 -12.4 76 Febantel 129 128.3 0.7
23 Penbutolol 68 78.5 -10.5 77 Clonidine 130 136.1 -6.1
24 Betaxolol 71 86.4 -15.4 78 Xylometazoline 131 124.8 6.2
25 Mephenesin 71.5 57.3 14.2 79 Diazepam 133 127.3 5.7
26 Phenadoxone 75 71.1 3.9 80 Thozalinone 133 133.5 -0.5
27 Ibuprofen 76 110.7 -34.7 81 Aminorex 136 145.7 -9.7
28 Mebutamate 77 71.4 5.6 82 Praziquantel 136 128.2 7.8
29 Oxprenolol 77.5 56.5 21.0 83 Simvastatin 136.5 142.4 -5.9
30 Methadone 78 61.1 16.9 84 Butalbital 138 138.8 -0.8
31 Allylestrenol 80 80.0 0.0 85 Phenazopyridine 139 147.9 -8.9
32 Bamifylline 80 106.1 -26.1 86 Erythrocentaurin 140 161.0 -21.0
33 Nabumetone 80 67.0 13.0 87 Carbaryl 142 144.1 -2.1
34 Anileridine 83 83.3 -0.3 88 Fexofenadine 142 141.0 1.0
35 Fentanyl 83 67.2 15.8 89 Letosteine 142 149.8 -7.8
36 Amphetaminil 85 84.2 0.8 90 Acetylsalicylic acid 142.4 172.9 -30.5
37 Methdilazine 87 91.1 -4.1 91 Tetrazepam 144 126.4 17.6
38 Noxythiolin 88 90.1 -2.1 92 Felodipin 145 140.9 4.1
39 Vinylbital 90 83.4 6.6 93 Metoclopramide 146.5 153.7 -7.2
40 Phenindamine 91 92.9 -1.9 94 Atenolol 147 152.7 -5.7
41 Carisoprodol 92 87.6 4.4 95 clotrimazole 147 144.6 2.4
42 Beclamide 92.5 99.1 -6.6 96 Salacetamide 148 157.1 -9.1
43 Perphenazine 94 110.8 -16.8 97 Morazone 149 146.7 2.3
44 Thenalidine 95 75.2 19.8 98 Astemizole 149.1 162.3 -13.2
45 Tropicamide 96.5 96.6 -0.1 99 Acemetacin 150 134.2 15.8
46 Aldicarb 99 97.6 1.4 100 Mafenide 151 140.9 10.1
47 Acetylpheneturide 100 96.2 3.8 101 Haloperidol 151.5 148.2 3.3
48 Phenocoll 100.5 117.7 -17.2 102 Glymidine 152 152.4 -0.4
49 Piperidione 102 106.1 -4.1 103 Azatadine 153 148.1 4.9
50 Isoxsuprine 102.5 94.8 7.7 104 Testosterone 153 180.9 -27.9



838 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4 Aziz Habibi-Yangjeh et al.

Table 1. Continued Table 1. Continued

No. Compound Experimental Cal 
(PC-GA-ANN) Res. No. Compound Experimental Cal 

(PC-GA-ANN) Res.

105 Taurolidine 154 152.8 1.2 158 Glipizide 205 218.5 -13.5
106 Colchicane 156 160.7 -4.7 159 Oxazepam 205.5 179.5 26.
107 moricizine 156 157.3 -1.3 160 Lonidamine 207 2 6.8 .2
108 Omeprazole 156 150.3 5.7 161 Amodiaquine 208 2 6.3 1.7
109 Urapidil 156 137.3 18.7 162 Indoramin 208 217.2 -9.2
110 Salicylic acid 157 163.0 -6.0 163 Vigabatrin 209 2 1.8 7.2
111 Succisulfone 157 152.0 5.0 164 Methetion 210 198.8 11.2
112 Lidoflazine 159 153.8 5.2 165 Pimozide 216 211.9 4.1
113 Azacyclonol 160 158.1 1.9 166 Oxycodone 219 2 8.3 1 .7
114 Benzydamine 160 164.0 -4.0 167 Hydroxyprogesterone 222.5 213.5 9.
115 Didanosine 160 156.1 3.9 168 Hydrocortisone 223 235.9 -12.9
116 Ketorolac 160.5 178.2 -17.7 169 Apazone 228 212.5 15.5
117 Oxaprozin 160.5 161.7 -1.2 170 Acitretin 229 215. 14.
118 Aldosterone 164 176.3 -12.3 171 Nalidixic acid 229.5 219.1 1 .4
119 Pizotifen 164 169.8 -5.8 172 Salinazid 232.5 235.6 -3.1
120 Tolrestat 164 175.0 -11.0 173 Diaveridine 233 227.8 5.2
121 Lorazepam 166 184.1 -18.1 174 Phenopyrazone 233 217.5 15.5
122 Sulfamethoxazole 167 161.7 5.3 175 Pyrimethamine 233.5 23 .3 3.2
123 Chlortetracycline 168.5 168.3 0.2 176 Nicotinic acid 235.5 215.7 19.8
124 Glyburide 169 170.0 -1.0 177 Caffiene 238 213.3 24.7
125 Benperidol 170 161.2 8.8 178 Prednisolone 240.5 231.7 8.8
126 Metopimazine 170 160.5 9.5 179 Cromolyn 241 238.6 2.4
127 Tolazamide 170 183.7 -13.7 180 Clometacin 242 225.9 16.1
128 Isoniazid 172 188.2 -16.2 181 Domperidone 242.5 249.3 -6.8
129 Hydralazine 172.5 166.3 6.2 182 Metolazone 252 235.4 16.6
130 Nifedipine 173 179.0 -6.0 183 Finasteride 253 245.9 7.1
131 Lovastatin 174.5 159.5 15.0 184 Nifenazone 253 234.4 18.6
132 Amisometradine 175 167.6 7.4 185 Pemoline 259 215.5 43.5
133 Acifran 176 179.3 -3.3 186 Dexamethasone 260 262.7 -2.7
134 Melphalan 177 170.2 6.8 187 Ciprofloxacin 266 259.9 6.1
135 Propallylonal 177 179.7 -2.7 188 Hydroflumethiazide 270.5 262.8 7.7
136 Sulpiride 178 184.0 -6.0 189 Acefylline 271 278.1 -7.1
137 Zomepirac 178 177.0 1.0 190 Dantrolene 279.5 283.8 -4.3
138 Nomifensine 179 165.8 13.2 191 Fluorouracil 283 281.2 1.8
139 Sulthiame 180 174.8 5.2 192 Prazosin 285 274.5 1 .5
140 Acepromazine 182.5 174.7 7.8 193 Enoxolone 296 284.7 11.3
141 Amphenidone 182.5 173.2 9.3 194 Diazoxide 330.5 334.5 -4.
142 Sulfacetamide 183 179.4 3.6 195 Orotic acid 345 347.6 -2.6
143 Bezafibrate 186 186.8 -0.8 Validation
144 Acetohexamide 189 179.6 9.4 196 Trichlorethylene -86 -85.7 - .3
145 Pyrazinamide 189 200.8 -11.8 197 Methyl salicylate -8 -7.5 - .5
146 Clomipramine 189.5 184.5 5.0 198 Benzyl benzoate 18 31.4 -13.4
147 Carbamazepine 190 181.0 9.0 199 Prilocaine 37 63.9 -26.9
148 Embutramide 190.5 181.4 9.1 200 Ethopropazine 53 39.9 13.1
149 Apronal 194 197.3 -3.3 201 Isosorbide 61 66.4 -5.4

150 Clebopride 194 141.2 52.8 202 Fluanisone 67.5 7 .6 -3.1

151 Methotrexate 195 196.4 -1.4 203 Disulfiram 71 67.8 3.2

152 Aceglutamide 197 189.8 7.2 204 Ethylesterol 77 69.4 7.6

153 Aceneocoumarol 197 208.6 -11.6 205 Moxaverine 78 81. -3.

154 Furonazide 199 209.9 -10.9 206 Pentifylline 82 7 .8 11.2

155 Polythiazide 202.5 205.2 -2.7 207 Piprozolin 86 83.4 2.6

156 Ampicillin 203 237.0 -34.0 208 Alclofenac 91 12 .5 -29.5

157 Picrotoxin 203 199.1 3.9 209 Ketoprofen 94 9 .4 3.6
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Table 1. Continued

No. Compound Experimental Cal 
(PC-GA-ANN) Res.

210 Cocaine 98 1 9.3 -11.3
211 Hycanthone 100.6 124.4 -23.8
212 Benzoyl peroxide 105 1 3.7 1.3
213 Metaraminol 107.5 92.5 15.
214 Flurbiprofen 110 99.1 1 .9
215 Acetanilide 114 119.3 -5.3
216 Dibenzepin 116 1 9.3 6.7
217 Antazoline 120 1 5.2 14.8
218 Acebutolol 121 134.4 -13.4
219 Benzarone 124.3 15 .9 -26.6
220 Tolbutamide 128.5 113.8 14.7
221 Benzylmorphine 132 135.8 -3.8
222 Mephenytoin 136 154. -18.
223 Alizapride 139 157.2 -18.2
224 Cimetidine 142 133.5 8.5
225 Carbutamide 144 145.6 -1.6
226 Pyrinoline 146.5 153.9 -7.4
227 Thialbarbital 148 148.2 - .2
228 Salbutamol 151 143.7 7.3
229 Bufexamac 153 138. 15.
230 Ketobemidone 156 167.4 -11.4
231 Dihydromorphine 157 178.3 -21.3
232 Metronidazole 159 148.2 1 .8
233 Methallatal 160 158.4 1.6
234 Halazepam 164 16 .9 3.1
235 Clobazam 167 159.3 7.7
236 Sumatriptan 169 161.2 7.8
237 Hydroquinine 172 181.5 -9.5
238 Heptabarbital 174 158.1 15.9
239 Mephobarbital 176 181.6 -5.6
240 Ximoprofen 178 183.7 -5.7
241 Androstanolone 181 164.1 16.9
242 Zox azolamine 184 183.8 .2
243 Verazide 189 186. 3.
244 Acediasulfone 194 21 .4 -16.4
245 Probenecid 195 19 .4 4.6
246 Alphadolone 200 192. 8.
247 Ursodiol 203 2 5.5 -2.5
248 Sotalol 207 2 9.4 -2.4
249 Acecainide 210 184.6 25.4
250 Propylthiouracil 219 218.1 .9
251 Azapropazone 228 232.9 -4.9
252 Chlorazanil 233 247.6 -14.6
253 Sulfamerazine 234 243.9 -9.9
254 Amiloride 241 244.4 -3.4
255 Azathioprine 243.5 24 .3 3.2
256 Morphine 255 234.7 2 .3
257 Fosfosal 268 266.9 1.1
258 Moxestrol 280 241.8 38.2
259 Flucytosine 296 294.2 1.8

Prediction
260 Sevoflurane -116 -116.7 .7
261 Tetrachloroethylene -22.3 -24.1 1.8
262 Paraldehyde 12.6 28.9 -16.3
263 Tranylcypromine 28 21. 7.
264 Ifosfamide 48 51.7 -3.7
265 Triprolidine 60 59.3 .7

Table 1. Continued

No. Compound Experimental Cal 
(PC-GA-ANN) Res.

266 Chlorambucil 66 67.2 -1.2
267 Ranitidine 69 90.9 -21.9
268 Propoxyphene 75 70.3 4.7
269 Etisazol 78 74.1 3.9
27 Guaiphenesin 80 67.5 12.5
271 Metrifonate 83 84.0 -1.0
272 Benzocaine 90 82.6 7.4
273 Maprotiline 92 132.4 -40.4
274 Tamoxifen 96 102.2 -6.2
275 Metaproterenol 100 106.0 -6.0
276 Difenidol 103.5 118.1 -14.6
277 Pipobroman 106 107.3 -1.3
278 Acetylcysteine 109.5 98.4 11.1
279 Cyproheptad ine 113 108.4 4.6
28 Flupirtine 115 142.8 -27.8
281 Moperone 118 110.0 8.0
282 Temazepam 120 127.7 -7.7
283 Benzoic acid 122.4 99.0 23.4
284 Lofexidine 126 142.9 -16.9
285 Bitoscanate 131 138.2 -7.2
286 Phenacetin 134.5 130.0 4.5
287 Sulfinpyrazone 136.5 156.9 -20.4
288 Aprobarbitone 141 141.2 -0.2
289 Proglumide 142 149.9 -7.9
29 Ketoconazole 146 133.5 12.5
291 Cloricromen 147.5 139.3 8.2
292 Felbamate 151 140.0 11.0
293 Naproxen 152 157.5 -5.5
294 Amobarbital 156 176.3 -20.3
295 Phenallymal 156 158.4 -2.4
296 Warfarin 157 148.4 8.6
297 Bucetin 160 172.4 -12.4
298 Famotidine 163 166.9 -3.9
299 Tyramine 164 169.3 -5.3
3 Acetaminophen 169 176.5 -7.5
3 1 Risperdone 170 183.1 -13.1
3 2 Tetracycline 172.5 174.3 -1.8
3 3 Amoxapine 175.5 182.6 -7.1
3 4 Oxymetholone 178 202.9 -24.9
3 5 Dextromoramide 180 182.5 -2.5
3 6 Clozapine 183 188.3 -5.3
3 7 Glisoxepid 189 187.6 1.4
3 8 Spiperone 190 187.4 2.6
3 9 Hymecromone 194 179.2 14.8
31 Piroxicam 198 212.6 -14.6
311 Caroxazone 203 158.5 44.5
312 Baclofen 207 214.7 -7.7
313 Buprenorphine 209 213.5 -4.5
314 Griseofulvin 219 217.0 2.0
315 Thioacetazone 227.5 220.7 6.8
316 Oxibendazole 230 224.4 5.6
317 Ubenimex 233 231.6 1.4
318 Lotrifen 238 232.8 5.2
319 Zolimidine 242 244.0 -2.0
32 Flumequine 253 252.0 1.0
321 Reserpine 264.5 264.3 0.2
322 Hydrochlorthiazide 274 272.4 1.6
323 Acedapsone 289 268.8 20.2
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optimized neural network could simulate the complicated 
nonlinear relationship between melting point values and the 
PC’s. The RMSE of 48.176 for the prediction set by the PC- 
GA-MLR model should be compared with the value of 
12.77 for the PC-GA-ANN model. As can be seen, ability of 
the proposed model to predict the melting point is very 
higher than the QSPR models proposed in recently publish
ed paper (RMSE of 12.767 should be compared with 40.7 
°C). It can be seen that although parameters appearing in the 
PC-GA-MLR model are used as inputs for the generated PC- 
GA-ANN model, the statistics has shown a large improve
ment. These improvements are due to the fact that melting 
point of the compounds shows non-linear correlations with 
the principal components.

The melting point of a compound is governed by the 
intermolecular hydrogen-bonding ability of the molecules, 
the molecular packing in crystals (effects from molecular 
shape, size, and symmetry), and other intermolecular inter
actions such as charge transfer and dipole-dipole interactions 
in the solid phase.6 The solubility of a compound can be 
regarded as a partitioning of the compound between its 
crystal lattice and the solvent. If the forces holding the 
molecule in the crystal are high, then the solubility will be 
low. For the same reason the melting point will be high, 
since melting point is a measure of the energy required to 
disrupt the crystal lattice. The molar aqueous solubility can 
be calculated using melting point of compounds by the 
general solubility equation.2 Then melting points affect 
solubility, and solubility controls toxicity in that; if a com
pound is only poorly soluble, its concentration in the aque
ous environment may be too low for it to exert a toxic 
effect.5 As a result prediction of melting point of the com
pounds using the proposed non-linear model is a valuable 
method in designing new drugs within a specified range of 
melting point and solubility.

Conclusions

Quantitative-structure property relationships have been 
applied for prediction of melting point for 323 drug-like 
compounds by using the principal component-genetic 
algorithm-multi parameter linear regression (PC-GA-MLR) 
and principal component-genetic algorithm-artificial neural 
network (PC-GA-ANN) methods. Comparison of the stati
stical parameters obtained for training, validation and pre
diction sets by the PC-GA-MLR and PC-GA-ANN models 
demonstrate superiority of the PC-GA-ANN model over the 
PC-GA-MLR model. Root-mean square error of 48.18 for 
the prediction set by the PC-GA-MLR model should be 
compared with the value of 12.77 °C for the PC-GA-ANN 
model. Since the improvement of the results obtained using 
non-linear model (PC-GA-ANN) is considerable, it can be 
concluded that the non-linear characteristics of the principal 
components on melting point of the compounds is serious.
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