• Title/Summary/Keyword: generalized hypergeometric functions

Search Result 111, Processing Time 0.026 seconds

CERTAIN UNIFIED INTEGRALS INVOLVING PRODUCT OF GENERALIZED k-BESSEL FUNCTION AND GENERAL CLASS OF POLYNOMIALS

  • Menaria, N.;Parmar, R.K.;Purohit, S.D.;Nisar, K.S.
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.349-361
    • /
    • 2017
  • By means of the Oberhettinger integral, certain generalized integral formulae involving product of generalized k-Bessel function $w^{{\gamma},{\alpha}}_{k,v,b,c}(z)$ and general class of polynomials $S^m_n[x]$ are derived, the results of which are expressed in terms of the generalized Wright hypergeometric functions. Several new results are also obtained from the integrals presented in this paper.

INCOMPLETE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS AND ASSOCIATED PROPERTIES

  • Parmar, Rakesh K.;Saxena, Ram K.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.287-304
    • /
    • 2017
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we first introduce incomplete Fox-Wright function. We then define the families of incomplete extended Hurwitz-Lerch Zeta function. We then systematically investigate several interesting properties of these incomplete extended Hurwitz-Lerch Zeta function which include various integral representations, summation formula, fractional derivative formula. We also consider an application to probability distributions and some special cases of our main results.

TWO GENERAL HYPERGEOMETRIC TRANSFORMATION FORMULAS

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.519-526
    • /
    • 2014
  • A large number of summation and transformation formulas involving (generalized) hypergeometric functions have been developed by many authors. Here we aim at establishing two (presumably) new general hypergeometric transformations. The results are derived by manipulating the involved series in an elementary way with the aid of certain hypergeometric summation theorems obtained earlier by Rakha and Rathie. Relevant connections of certain special cases of our main results with several known identities are also pointed out.

A NOTE ON A CLASS OF CONVOLUTION INTEGRAL EQUATIONS

  • LUO, MIN-JIE;RAINA, R.K.
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.397-409
    • /
    • 2015
  • This paper considers a class of new convolution integral equations whose kernels involve special functions such as the generalized Mittag-Leffler function and the extended Kummer hypergeometric function. Some basic properties of interconnection with the familiar Riemann-Liouville operators are obtained which are used in fiding the solution of the main convolution integral equation. Several consequences are deduced from the main result by incorporating certain extended forms of hypergeometric functions in our present investigation.

QUADRATIC TRANSFORMATIONS INVOLVING HYPERGEOMETRIC FUNCTIONS OF TWO AND HIGHER ORDER

  • Choi, June-Sang;Rathie, Arjun K.
    • East Asian mathematical journal
    • /
    • v.22 no.1
    • /
    • pp.71-77
    • /
    • 2006
  • By applying various known summation theorems to a general transformation formula based upon Bailey's transformation theorem due to Slater, Exton has obtained numerous and new quadratic transformations involving hypergeometric functions of order greater than two(some of which have typographical errors). We aim at first deriving a general quadratic transformation formula due to Exton and next providing a list of quadratic formulas(including the corrected forms of Exton's results) and some more results.

  • PDF

NEW LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 2F2

  • KIM, YONG SUP;RATHIE, ARJUN K.;LEE, CHANG HYUN
    • Honam Mathematical Journal
    • /
    • v.37 no.2
    • /
    • pp.245-252
    • /
    • 2015
  • This paper is in continuation of the paper very recently published [New Laplace transforms of Kummer's confluent hypergeometric functions, Math. Comp. Modelling, 55 (2012), 1068-1071]. In this paper, our main objective is to show one can obtain so far unknown Laplace transforms of three rather general cases of generalized hypergeometric function $_2F_2(x)$ by employing generalized Watson's, Dixon's and Whipple's summation theorems for the series $_3F_2$ obtained earlier in a series of three research papers by Lavoie et al. [5, 6, 7]. The results established in this paper may be useful in theoretical physics, engineering and mathematics.

CERTAIN DECOMPOSITION FORMULAS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS pFq AND SOME FORMULAS OF AN ANALYTIC CONTINUATION OF THE CLAUSEN FUNCTION 3F2

  • Choi, June-Sang;Hasanov, Anvar
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • Here, by using the symbolical method introduced by Burchnall and Chaundy, we aim at constructing certain expansion formulas for the generalized hypergeometric function $_pF_q$. In addition, using our expansion formulas for $_pF_q$, we present formulas of an analytic continuation of the Clausen hypergeometric function $_3F_2$, which are much simpler than an earlier known result. We also give some integral representations for $_3F_2$.

ON SOME FORMULAS FOR THE GENERALIZED APPELL TYPE FUNCTIONS

  • Agarwal, Praveen;Jain, Shilpi;Khan, Mumtaz Ahmad;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-850
    • /
    • 2017
  • A remarkably large number of special functions (such as the Gamma and Beta functions, the Gauss hypergeometric function, and so on) have been investigated by many authors. Motivated the works of both works of both Burchnall and Chaundy and Chaundy and very recently, Brychkov and Saad gave interesting generalizations of Appell type functions. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present some new differential formulas for the generalized Appell's type functions ${\kappa}_i$, $i=1,2,{\ldots},18$ by considering the product of two $_4F_3$ functions.

On a q-Extension of the Leibniz Rule via Weyl Type of q-Derivative Operator

  • Purohit, Sunil Dutt
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.473-482
    • /
    • 2010
  • In the present paper we define a q-extension of the Leibniz rule for q-derivatives via Weyl type q-derivative operator. Expansions and summation formulae for the generalized basic hypergeometric functions of one and more variables are deduced as the applications of the main result.

Generalizations of Ramanujan's Integral Associated with Infinite Fourier Cosine Transforms in Terms of Hypergeometric Functions and its Applications

  • Qureshi, Mohammad Idris;Dar, Showkat Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.781-795
    • /
    • 2020
  • In this paper, we obtain an analytical solution for an unsolved definite integral RC (m, n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using the hypergeometric approach and an infinite series decomposition identity. Also, we give some generalizations of Ramanujan's integral RC (m, n) defined in terms of the ordinary hypergeometric function 2F3 with suitable convergence conditions. Moreover as applications of our result we obtain nine new infinite summation formulas associated with the hypergeometric functions 0F1, 1F2 and 2F3.