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TWO GENERAL HYPERGEOMETRIC

TRANSFORMATION FORMULAS

Junesang Choi and Arjun K. Rathie

Abstract. A large number of summation and transformation formulas
involving (generalized) hypergeometric functions have been developed by
many authors. Here we aim at establishing two (presumably) new general
hypergeometric transformations. The results are derived by manipulating
the involved series in an elementary way with the aid of certain hyper-
geometric summation theorems obtained earlier by Rakha and Rathie.
Relevant connections of certain special cases of our main results with
several known identities are also pointed out.

1. Introduction and preliminaries

Throughout this paper, N, R, C, and Z
−

0 denote the sets of positive integers,
real numbers, complex numbers, and nonpositive integers, respectively, and
N0 := N ∪ {0}.

In the theory of hypergeometric and generalized hypergeometric series, clas-
sical summation theorems such as those of Gauss, Kummer’s first, second and
third for the series 2F1 with arguments 1, −1 and 1

2 , and Watson, Dixon, Whip-
ple and Saalschütz for the series 3F2 with argument 1 play a key role. For more
details about the series 2F1 and 3F2, and their convergence conditions, we refer
to the familiar books such as Bailey [1], Rainville [7], and Slater [9] (see also
Srivastava and Choi [10, 11]).

Here, we are concerned with the following Gauss summation theorem and
Kummer second summation theorem (see, e.g., [1]), respectively:

(1.1) 2F1

[

a, b;

c;
1

]

=
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
(ℜ(c− a− b) > 0)
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and

(1.2) 2F1





a, b;

1

2
(a+ b+ 1);

1

2



 =
Γ
(

1
2

)

Γ
(

1
2a+

1
2b+

1
2

)

Γ
(

1
2a+

1
2

)

Γ
(

1
2b+

1
2

) .

Recently a good deal of progress has been made in the direction of gener-
alizing and extending the above-mentioned classical summation theorems. For
this, we refer to the recent works by Lavoie et al. [6], Kim et al. [4, 5], Rakha
and Rathie [8], and the references therein.

In particular, in 1996, Lavoie et al. [6] obtained a generalization of Kummer’s
second summation theorem (1.2) and presented explicit expressions of

(1.3) 2F1





a, b;

1

2
(a+ b+ i+ 1);

1

2



 (i = 0, ±1, . . . , ±5) .

In 2011, using (1.3), Choi et al. [2] established certain generalization of the
well known transformation formula due to Kummer:

(1.4)

2F1





a, b;

1

2
(a+ b+ 1);

1

2
(1 + z)





=
Γ
(

1
2

)

Γ
(

1
2a+

1
2b+

1
2

)

Γ
(

1
2a+ 1

2

)

Γ
(

1
2b+

1
2

) 2F1







1

2
a,

1

2
b;

1

2
;

z2







+
2Γ

(

1
2

)

Γ
(

1
2a+

1
2b+

1
2

)

Γ
(

1
2a

)

Γ
(

1
2b
) 2F1







1

2
a+

1

2
,
1

2
b+

1

2
;

3

2
;

z2






(|z| < 1)

and obtained eleven results closely related to (1.4).
Here, in this paper, we aim at presenting two (presumably) new and (po-

tentially) useful general transformation formulas involving generalized hyper-
geometric functions by using the same technique given in [2]. The results are
derived by manipulating the involved series in an elementary way with the
aid of certain known hypergeometric summation theorems like the following
identity (see, e.g., [7, p. 49]):

(1.5) 2F1







−
1

2
n, −

1

2
n+

1

2
;

c+
1

2
;

1






=

2n (c)n
(2c)n

(ℜ(c) > 0; n ∈ N0) ,

which is a special case of (1.1). Here (α)n is the Pochhammer symbol defined
(α ∈ C) by (α)n := α(α + 1) · · · (α+ n− 1) (n ∈ N) and 1 (n = 0).
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Certain special cases of our main formulas are seen to yield several known
summation identities. For our purpose, we require the following known sum-
mation theorem, a generalization of (1.2), due to Rakha and Rathie [8]:

(1.6)

2F1





a, b;

1

2
(a+ b+ i+ 1);

1

2





=
Γ
(

1
2

)

Γ
(

1
2a+

1
2b+

1
2 i+

1
2

)

Γ
(

1
2a−

1
2b−

1
2 i +

1
2

)

Γ
(

1
2b
)

Γ
(

1
2b +

1
2

)

Γ
(

1
2a−

1
2b +

1
2 i+

1
2

)

×

i
∑

r=0

(

i

r

)

(−1)r
Γ
(

1
2b +

1
2r
)

Γ
(

1
2a−

1
2 i+

1
2r +

1
2

) (i ∈ N0)

and
(1.7)

2F1





a, b;

1

2
(a+ b− i+ 1);

1

2





=
Γ
(

1
2

)

Γ
(

1
2a+

1
2b−

1
2 i+

1
2

)

Γ
(

1
2b
)

Γ
(

1
2b+

1
2

) ×

i
∑

r=0

(

i

r

)

Γ
(

1
2b+

1
2 i
)

Γ
(

1
2a−

1
2 i+

1
2r +

1
2

) (i ∈ N0) .

It is noted that the special case of (1.6) or (1.7) when i=0 is immediately
seen to yield the Kummer second theorem (1.2). It is also remarked in passing
that Choi et al. [3] presented certain interesting hypergeometric identities by
using the Beta integral formula.

2. Main transformation formulas

Here we establish the following two general transformation formulas:

(2.1)

G+3FH+2





a, b, c, g1, . . . , gG;

1

2
(a+ b+ i+ 1), 2c, h1, . . . , hH ;

y





=

∞
∑

m=0

(a)2m (b)2m (g1)2m · · · (gG)2m
(

a+b+i+1
2

)

2m
(h1)2m · · · (hH)2m

(

c+ 1
2

)

m
24m m!

× G+2FH+1





a+ 2m, b+ 2m, g1 + 2m, . . . , gG + 2m;

1

2
(a+ b+ 1 + 4m+ i), h1 + 2m, . . . , hH + 2m;

1

2
y





(i ∈ N0)
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and

(2.2)

G+3FH+2





a, b, c, g1, . . . , gG;

1

2
(a+ b− i+ 1), 2c, h1, . . . , hH ;

y





=

∞
∑

m=0

(a)2m (b)2m (g1)2m · · · (gG)2m
(

a+b−i+1
2

)

2m
(h1)2m · · · (hH)2m

(

c+ 1
2

)

m
24m m!

× G+2FH+1





a+ 2m, b+ 2m, g1 + 2m, . . . , gG + 2m;

1

2
(a+ b+ 1 + 4m− i), h1 + 2m, . . . , hH + 2m;

1

2
y





(i ∈ N0) ,

where pFq (p, q ∈ N0) denote the familiar generalized hypergeometric series
(see, e.g., [10, Section 1.4] and [11, Section 1.5]).

Proof. In order to establish the first general transformation formula (2.1), for
convenience and simplicity, let us denote the left-hand side of (2.1) by S. Ex-
pressing G+3FH+2 as a series, we have

S =
∞
∑

n=0

(a)n (b)n (g1)n · · · (gG)n
(

1
2 (a+ b+ i+ 1)

)

n
(h1)n · · · (hH)n

yn

2n n!

{

2n (c)n
(2c)n

}

.

Using the known result (1.5), we obtain

S =

∞
∑

n=0

(a)n (b)n (g1)n · · · (gG)n
(

1
2 (a+ b+ i+ 1)

)

n
(h1)n · · · (hH)n

yn

2n n!
2F1







−
1

2
n, −

1

2
n+

1

2
;

c+
1

2
;

1






.

Expressing 2F1 as a series, after some simplification, we get

S =
∞
∑

n=0

[n
2
]

∑

m=0

(a)n (b)n (g1)n · · · (gG)n
(

1
2 (a+ b+ i+ 1)

)

n
(h1)n · · · (hH)n

yn

2n n!

(

−n
2

)

m

(

−n
2 + 1

2

)

m
(

c+ 1
2

)

m
m!

.

Using an easily-derivable identity:

(α)2n = 22n
(

1

2
α

)

n

(

1

2
α+

1

2

)

n

,

we have

S =

∞
∑

n=0

[n
2
]

∑

m=0

(a)n (b)n (g1)n · · · (gG)n
(

1
2 (a+ b+ i+ 1)

)

n
(h1)n · · · (hH)n

yn

2n n!

(−n)2m

22m
(

c+ 1
2

)

m
m!

.

Again, using a known identity:

(−n)2m =
n!

(n− 2m)!
,
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we obtain

S =

∞
∑

n=0

[n
2
]

∑

m=0

(a)n(b)n(g1)n · · · (gG)n
(

1
2 (a+ b + i+ 1)

)

n
(h1)n · · · (hH)n

yn

(n− 2m)!m!2n+2m
(

c+ 1
2

)

m

.

Now, using the following series manipulation identity (see, e.g., [7, p. 57,
Lemma 11]):

∞
∑

n=0

[n
2
]

∑

k=0

A(k, n) =

∞
∑

n=0

∞
∑

k=0

A(k, n+ 2k),

after a little simplification, we get

S =

∞
∑

n=0

∞
∑

m=0

(a)n+2m (b)n+2m (g1)n+2m · · · (gG)n+2m
(

1
2 (a+ b+ i+ 1)

)

n+2m
(h1)n+2m · · · (hH)n+2m

×
yn+2m

n!m! 2n+4m
(

c+ 1
2

)

m

.

Then, using a known identity:

(α)n+2m = (α)2m (α+ 2m)n

in each of the involved terms, after some simplification, we have

S =

∞
∑

m=0

(a)2m (b)2m (g1)2m · · · (gG)2m
(

1
2 (a+ b+ i+ 1)

)

2m
(h1)2m · · · (hH)2m

y2m

24m
(

c+ 1
2

)

m

×

∞
∑

n=0

(a+ 2m)n (b + 2m)n (g1 + 2m)n · · · (gG + 2m)n
(

1
2 (a+ b+ i+ 1) + 2m

)

n
(h1 + 2m)n · · · (hH + 2m)n

yn

2n n!
.

Finally, summing up the inner series, we are easily led to the right-hand side
of (2.1).

Next, the same argument as above will easily establish the second general
formula (2.2). �

3. Special cases

Here we present some of the known results that can be deduced from our
main transformation formulas (2.1) and (2.2).

(i) In (2.1), if we set i = 0, G = H = 0 and y = 1, we obtain

(3.1)

3F2





a, b, c;

1

2
(a+ b+ 1), 2c;

1





=
∞
∑

m=0

(a)2m (b)2m
(

a+b+1
2

)

2m
24m m!

2F1





a+ 2m, b+ 2m;

1

2
(a+ b+ 4m+ 1);

1

2



 .
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Evaluating 2F1 appearing on the right-hand side of (3.1) by using the Kummer’s
second summation theorem (1.2) and an easily-derivable identity:

(α)2m = 22m
(

1

2
a

)

m

(

1

2
a+

1

2

)

m

,

and, after a little simplification, summing up the series and finally applying
the Gauss summation theorem (1.1), we get the following classical Watson’s
summation theorem (see, e.g., [1]):

(3.2)

3F2





a, b, c;

1

2
+

1

2
a+

1

2
b, 2c;

1





=
Γ
(

1
2

)

Γ
(

c+ 1
2

)

Γ
(

1
2 + 1

2a+
1
2b
)

Γ
(

1
2 − 1

2a− 1
2 b+ c

)

Γ
(

1
2 + 1

2a
)

Γ
(

1
2 + 1

2b
)

Γ
(

1
2 − 1

2a+ c
)

Γ
(

1
2 − 1

2 b+ c
)

provided ℜ(2c− a− b) > −1.
(ii) Similarly as in (i), taking G = H = 0 and y = 1 in (2.1), and G = H = 0

and y = 1 in (2.2), and using the results (1.6) and (1.7), respectively, we obtain
the following general summation formulas:

(3.3)

3F2





a, b, c;

1

2
(a+ b+ i+ 1), 2c;

1





=
Γ
(

1
2

)

Γ
(

1
2a+

1
2b +

1
2 i+

1
2

)

Γ
(

1
2a− 1

2 b−
1
2 i+

1
2

)

Γ
(

1
2b
)

Γ
(

1
2b+

1
2

)

Γ
(

1
2a− 1

2b+
1
2 i+

1
2

)

×
i

∑

r=0

(−1)r
(

i

r

)

Γ
(

1
2b+

1
2r
)

Γ
(

1
2a−

1
2 i+

1
2r +

1
2

)

× 3F2







1

2
a,

1

2
a+

1

2
,
1

2
b+

1

2
r;

c+
1

2
,
1

2
a+

1

2
r −

1

2
i+

1

2
;

1






(i ∈ N0)

and

(3.4)

3F2





a, b, c;

1

2
(a+ b− i + 1), 2c;

1





=
Γ
(

1
2

)

Γ
(

1
2a+

1
2b+

1
2 i+

1
2

)

Γ
(

1
2b
)

Γ
(

1
2b+

1
2

)

i
∑

r=0

(

i

r

)

Γ
(

1
2b+

1
2r
)

Γ
(

1
2a−

1
2 i +

1
2r +

1
2

)

× 3F2







1

2
a,

1

2
a+

1

2
,
1

2
b +

1

2
r;

c+
1

2
,
1

2
a+

1

2
r −

1

2
i+

1

2
;

1






(i ∈ N0) .
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It is noted that (3.3) and (3.4) are known results obtained by Rakha and
Rathie [8] who used a different method. Further, the cases i = 0, 1, 2, 3, 4, 5
of the results (3.3) and (3.4) were also obtained by Kim and Rathie [4].

(iii) In (2.1), if we take i = 2, G = 1 = H , g1 = d+ 1, h1 = d and y = 1, we
have

(3.5)

4F3





a, b, c, d+ 1;

1

2
(a+ b+ 3), 2c, d;

1





=

∞
∑

m=0

(a)2m (b)2m (d+ 1)2m
(

1
2 (a+ b+ 3)

)

2m
(d)2m

(

c+ 1
2

)

m
24mm!

× 3F2





a+ 2m, b+ 2m, d+ 2m+ 1;

1

2
(a+ b+ 3 + 4m), d+ 2m;

1

2



 .

Now, we observe that the 3F2 appearing on the right-hand side of (3.5) can be
evaluated with the help of a known result [5, p. 15, Eq. (5.2)], then, after much
arrangement, separating it into three terms and summing up all the series and,
finally, evaluating each separated series by using Gauss’s summation theorem
(1.1), we are led to another known result due to Kim et al. [5]:
(3.6)

4F3





a, b, c, d+ 1;

1

2
(a+ b+ 3), 2c, d;

1





=
2a+b−2 Γ

(

c+ 1
2

)

Γ
(

1
2a+ 1

2b+
3
2

)

Γ
(

c− 1
2a−

1
2b−

1
2

)

Γ
(

1
2

)

Γ (a) Γ (b)

×

{

αΓ
(

1
2a

)

Γ
(

1
2b
)

Γ
(

c− 1
2a+ 1

2

)

Γ
(

c− 1
2b+

1
2

) +
β Γ

(

1
2a+

1
2

)

Γ
(

1
2b+

1
2

)

Γ
(

c− 1
2a+ 1

)

Γ
(

c− 1
2b+ 1

)

}

provided ℜ(2c− a− b) > −1, d ∈ C \ Z−

0 , and α and β are given by

α = a(2c− a) + b(2c− b)− 2c+ 1−
ab

d
(4c− a− b− 1)

and

β = 8

{

1

2d
(a+ b+ 1)− 1

}

.

It is noted that Kim et al. [5] obtained (3.6) by using a different method.
Further, if we take d = 1

2 (a+b+1) in (3.6), we recover Watson’s theorem (3.2).
Similarly many other explicit results may be obtained from our main formulas
(2.1) and (2.2).
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