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A NOTE ON A CLASS OF CONVOLUTION INTEGRAL

EQUATIONS

Min-Jie Luo and R. K. Raina∗

Abstract. This paper considers a class of new convolution integral
equations whose kernels involve special functions such as the gener-
alized Mittag-Leffler function and the extended Kummer hypergeo-
metric function. Some basic properties of interconnection with the
familiar Riemann-Liouville operators are obtained which are used
in finding the solution of the main convolution integral equation.
Several consequences are deduced from the main result by incorpo-
rating certain extended forms of hypergeometric functions in our
present investigation.

1. Introduction and preliminaries

As early as in 1969, Prabhakar [11] discussed a convolution integral
equation involving the generalized Mittag-Leffler function given by

(1)

∫ x

a
(x− t)β−1Eγ

α,β [ω (x− t)α] f (t) dt = g (x) (< (β) > 0, a ≥ 0) ,

where

(2) Eγ
α,β (z) =

∞∑

k=0

(γ)k
Γ (αk + β)

zk

k!
(z, α, β, λ ∈ C, < (α) > 0) .

To solve the integral equation (1), a fractional integral operator was
defined in the following form:

(3)
(
Eγ

α,β,ω;a+ϕ
)
(x) =

∫ x

a
(x− t)β−1Eγ

α,β [ω (x− t)α]ϕ (t) dt,
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which is bounded on L (a, b) (see [11, p.9, Theorem 1.]) with

(4)
∥∥∥
(
Eγ

α,β,ω;a+ϕ
)
(x)

∥∥∥
1
≤ M ‖ϕ‖1 (M > 0) .

The fractional integral operator (3) has a very important property
given by

Eγ
α,β,ω;a+

(
Ẽ−γ;−λ

α,λ−β,a+;ωϕ
)
(x) = ϕ (x) ,

where (
Ẽ−γ;−λ

α,λ−β,a+;ωϕ
)
(x) = E−γ

α,λ−β,a+;ω

(
I−λ
a+ϕ

)
(x) .

Here, I−λ
a+ (< (λ) > 0) is the inverse operator of the familiar Riemann-

Liouville fractional integral operator of order λ given, for instance, by
[7, p. 69, Eqn. (2.1.1)] (see also [9] and [14])

(5)
(
Iλa+ϕ

)
(x) =

1

Γ (α)

∫ x

a
(x− t)λ−1 ϕ (t) dt (< (λ) > 0) .

Over the last few decades, many researches on integral equations
involving the operator (3) and its generalizations have been undertaken
(amongst many others) in [4], [5], [6], [12] and [15]. The works in these
references and similar other investigations are aptly mentioned and cited
in the book by Srivastava and Buschman [16], which also describes in a
comprehensive manner several other useful applications of the theory of
convolution type integral equations.

The purpose of this paper is to consider and investigate a class of
convolution integral equation given by

(6)

∫ x

a
(x− t)λ−1Fσ

ρ,λ [ω (x− t)ρ]ϕ (t) dt = g (x) ,

where the kernel function Fσ
ρ,λ (x) involved in (6) is explicitly defined by

(7) Fσ
ρ,λ (x) = F{σ0,σ1,··· }

ρ,λ (x) =

∞∑

k=0

σ (k)

Γ (ρk + λ)
xk

(ρ, λ ∈ C (< (ρ) > 0) ; |x| < R) ,
where σ (k) (k ∈ N0) is a suitably prescribed sequence of real (or com-
plex) numbers and R is the set of real numbers. Many well-known special
functions including the generalized Mittag-Leffler function (2) and the
extended hypergeometric functions (given below) are the special cases of
the function Fσ

ρ,λ with some suitably chosen coefficients σ (k). The left-
hand side of the above integral equation is actually the integral operator
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defined by (Raina [13, p. 194, Eqn. (2.2)]) as

(8)
(J σ

ρ,λ,a+;ωϕ
)
(x) =

∫ x

a
(x− t)λ−1Fσ

ρ,λ [ω (x− t)ρ]ϕ (t) dt,

where a ∈ R+ (x > a); λ, ρ, ω ∈ C; (< (λ) > 0, < (ρ) > 0), ϕ (t) is such
that the integral on the right side exists. The operator J σ

ρ,λ,a+;ω and

many other specific cases of the operator J σ
ρ,λ,a+;ω can be found in [12],

[13], [16] and [18].
For our investigation, we also need to mention the following specific

cases of the function (7). The extended Gauss hypergeometric function
is defined by (see [8])

(9) 2F1

[
a, b
c
; z; p, q

]
=

∞∑

k=0

(a)k
Bp,q (b+ k, c− b)

B (b, c− b)

zk

k!
.

(|z| < 1; < (c) > < (b) > 0; < (p) ≥ 0, < (q) ≥ 0)

This function can be easily obtained by setting

σ (k) = (a)k
Γ (ρk + λ)

k!

Bp,q (b+ k, c− b)

B (b, c− b)

in (7). Similarly, we can define the extended Kummer hypergeometric
function as

(10) 1F1

[
b
c
; z; p, q

]
=

∞∑

k=0

Bp,q (b+ k, c− b)

B (b, c− b)

zk

k!
.

(< (c) > < (b) > 0; < (p) ≥ 0, < (q) ≥ 0)

In both (9) and (10), Bp,q (x, y) is the extended beta function defined
by (see [8, Eqn. (1.4)])

(11) Bp,q (x, y) =

∫ 1

0
tx−1 (1− t)y−1 exp

(
−p

t
− q

1− t

)
dt,

(< (p) ≥ 0, < (q) ≥ 0) .

By setting p = q = 0 in (11), we get the usual beta function. It
may also be noted that the function (11) is, in fact, a special case of
the function defined by [17, p. 256, Eqn. (6.1)]. Functions such as
(9), (10) and (11) with p = q have been studied in [1, 2, 3]. Being
generalizations of hypergeometric functions, these function classes have
been widely studied, but their applications in fractional calculus are
not much explored. In this paper, we will find that there is a very nice
connection between the extended Kummer hypergeometric function (10)
and our convolution integral equation (6).
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2. Results involving class of operators J σ
ρ,λ,a+;ω

We begin this section by presenting the following theorem about
the boundedness property for the class of fractional integral operators
J σ
ρ,λ,a+;ω on the space L (a, b) of Lebesgue measurable functions:

L (a, b) =

{
f : ‖f‖1 :=

∫ b

a
|f (t)|dt < ∞

}
.

Theorem 2.1. Let the function ϕ be in the space L (a, b). Choose
σ (k) (k ∈ N0) such that the series

(12) M :=
∞∑

k=0

|σ (k)|
∣∣∣ω (b− a)<(ρ)

∣∣∣
k

|Γ (ρk + λ)| [< (λ) + < (ρ) k]

is convergent. Then the fractional integral operator J σ
ρ,λ,a+;ω is bounded

on L (a, b) and satisfies
∥∥J σ

ρ,λ,a+;ωϕ
∥∥
1
≤ M (b− a)<(λ) ‖ϕ‖1 .

Proof. It is sufficient to show that

∥∥J σ
ρ,λ,a+;ωϕ

∥∥
1
=

∫ b

a

∣∣∣∣
∫ x

a
(x− t)λ−1Fσ

ρ,λ [ω (x− t)ρ]ϕ (t) dt

∣∣∣∣dx < ∞.

By using the Dirichlet formula ([14, p. 9, Eqn. (1.32)]), viz.

(13)

∫ b

a
dx

∫ x

a
f (x, y) dy =

∫ b

a
dy

∫ b

y
f (x, y) dx,

we get

∥∥J σ
ρ,λ,a+;ωϕ

∥∥
1
≤

∫ b

a
|ϕ (t)|

(∫ b

t
(x− t)<(λ)−1

∣∣Fσ
ρ,λ [ω (x− t)ρ]

∣∣dx
)
dt

≤
∫ b

a
|ϕ (t)|

(∫ b−a

0
v<(λ)−1

∣∣Fσ
ρ,λ [ωv

ρ]
∣∣ dv

)
dt

≤
(∫ b−a

0
v<(λ)−1

∣∣Fσ
ρ,λ [ωv

ρ]
∣∣dv

)
‖ϕ‖1

≤
( ∞∑

k=0

|σ (k)| |ω|k
|Γ (ρk + λ)|

∫ b−a

0
v<(λ)+<(ρ)k−1dv

)
‖ϕ‖1

=

( ∞∑

k=0

|σ (k)| |ω|k (b− a)<(λ)+<(ρ)k

|Γ (ρk + λ)| [< (λ) + < (ρ) k]

)
‖ϕ‖1
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= M (b− a)<(λ) ‖ϕ‖1 .(14)

This completes the proof.

Remark 2.2. By setting σ (k) = (γ)k /k!, ρ = α and λ = β in above
theorem, we get (4). It also follows easily for suitably chosen parameters
that the fractional integral operator J σ

ρ,λ,a+;ω containing the function (9)

or (10) as its kernel is also bounded on L (a, b).

In what follows, we assume throughout that the sequence σ (k) sat-
isfies the requirement (12) stated in Theorem 2.1 and that the function
ϕ is in L (a, b).

Proposition 2.3. If < (α) > −< (λ), then

(15)
(
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x) =

(J σ
ρ,λ+α,a+;ωϕ

)
(x) .

Proof. The validity of (15) for < (α) > 0 has been proved in [13,
p. 196, Eqn. (2.8)]. So we only need to prove that (15) holds for
0 ≥ < (α) > −< (λ).

Suppose 0 > < (α) > −< (λ). Since < (α+ λ) > 0, then for ϕ ∈
L (a, b), we have

(16)
(J σ

ρ,λ+α,a+;ωϕ
)
(x) ∈ L (a, b) .

Applying the operator I−α
a+ to both sides of (15), we have

(17) I−α
a+

(J σ
ρ,λ+α,a+;ωϕ

)
(x) =

(J σ
ρ,λ,a+;ωϕ

)
(x) .

In view of the condition (16), we can write

(18)
(J σ

ρ,λ+α,a+;ωϕ
)
(x) = Iαa+

(J σ
ρ,λ,a+;ωϕ

)
(x) .

When < (α) = 0, we have
(J σ

ρ,λ+α,a+;ωϕ
)
(x) = Iα−1

a+

(J σ
ρ,λ+1,a+;ω

)
(x)

= Iαa+
(
I−1
a+

(J σ
ρ,λ+1,a+;ω

))
(x)

= Iαa+
(J σ

ρ,λ,a+;ωϕ
)
(x) .(19)

This competes the proof.

Proposition 2.4. Let < (α) > 0. Then we have
(J σ

ρ,λ,a+;ω

(
Iαa+ϕ

))
(x) =

(
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x)

Proof. Since ϕ ∈ L (a, b) and
(
Iαa+ϕ

)
(x) ∈ L (a, b), Therefore, on

using (5) and (8), we have
(J σ

ρ,λ,a+;ω

(
Iαa+ϕ

))
(x)
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=
1

Γ (α)

∫ x

a
(x− t)λ−1Fσ

ρ,λ [ω (x− t)ρ]

(∫ t

a
(t− u)α−1 ϕ (u) du

)
dt

=
1

Γ (α)

∫ x

a
ϕ (u) du

∫ x

u
(x− t)λ−1 (t− u)α−1Fσ

ρ,λ [ω (x− t)ρ] dt

(
on evaluating the inner integral by
means of the substitution: v = x−t

x−u

)

=

∫ x

a
(x− u)λ+α−1Fσ

ρ,λ+α,a+;ω [ω (x− u)ρ]ϕ (u) du

=
(J σ

ρ,λ+α,a+;ωϕ
)
(x) .

Now on using (15), we get(J σ
ρ,λ,a+;ω

(
Iαa+ϕ

))
(x) =

(
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x)

for < (α) > 0.

Theorem 2.5. (commutativity) If ϕ and
(
Iαa+ϕ

)
(x) (α ∈ C) exist in

L (a, b), then(
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x) =

(J σ
ρ,λ,a+;ω

(
Iαa+ϕ

))
(x) .

Proof. The commutativity of Iαa+ and J σ
ρ,λ,a+,ω when < (α) > 0 is

considered in Proposition 2.4, so we just need to prove(
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x) =

(J σ
ρ,λ,a+;ω

(
Iαa+ϕ

))
(x) (< (α) ≤ 0) .

Suppose < (α) < 0, let Iαa+ϕ (x) = f (x). By Proposition 2.4, we have
(
I−α
a+

(J σ
ρ,λ,a+;ωf

))
(x) =

(J σ
ρ,λ,a+;ω

(
I−α
a+ f

))
(x) .

By applying Iαa+ on both the sides in this last equation above, we get
(J σ

ρ,λ,a+;ωf
)
(x) = Iαa+

(J σ
ρ,λ,a+;ω

(
I−α
a+ f

))
(x) ,

which implies that(J σ
ρ,λ,a+;ω

(
Iαa+ϕ

))
(x) =

(
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x) (< (α) < 0) .

When < (α) = 0, we write
(
Iα+1
a+

(J σ
ρ,λ,a+;ωϕ

))
(x) =

(J σ
ρ,λ,a+;ω

(
Iα+1
a+ ϕ

))
(x) ,

that is, (
Iαa+

(J σ
ρ,λ,a+;ωϕ

))
(x) = I−1

a+

(J σ
ρ,λ,a+;ω

(
Iα+1
a+ ϕ

))
(x)

= J σ
ρ,λ,a+;ω

(
I−1
a+

(
Iα+1
a+ ϕ

))
(x)

=
(J σ

ρ,λ,a+;ω

(
Iαa+ϕ

))
(x) .

This completes the proof.
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Theorem 2.6. If < (λ1) > 0, < (λ2) > 0, then

(20) J σ1
ρ,λ1,a+;ω

(
J σ2
ρ,λ2;a+;ωϕ

)
(x) =

(J Ω
ρ,λ1+λ2,a+;ωϕ

)
(x) ,

where the sequences σ1 and σ2 are suitably chosen such that

Ω := Ω (m) =
m∑

n=0

σ1 (m− n)σ2 (n)

makes J Ω
ρ,λ1+λ2,a+;ω a bounded operator in L (a, b).

Proof. Since ϕ ∈ L (a, b), therefore,
(
J σ2
ρ,λ2;a+;ωϕ

)
(x) exists in L (a, b),

and upon using (8), we have

J σ1
ρ,λ1,a+;ω

(
J σ2
ρ,λ2;a+;ωϕ

)
(x)

=

∫ x

a
(x− u)λ1−1Fσ1

ρ,λ1
[ω (x− u)ρ]

{∫ u

a
(u− t)λ2−1Fσ2

ρ,λ2
[ω (u− t)ρ]ϕ (t) dt

}
du

=

∫ x

a
ϕ (t)

{∫ x

t
(x− u)λ1−1 (u− t)λ2−1Fσ1

ρ,λ1
[ω (x− u)ρ]

· Fσ2
ρ,λ2

[ω (u− t)ρ] du

}
dt.(21)

Set v = x−u
x−t , the inner integral becomes

(x− t)λ1+λ2−1
∫ 1

0
vλ1−1 (1− v)λ2−1Fσ1

ρ,λ1
[ω (x− t)ρ vρ]

· Fσ2
ρ,λ2

[ω (x− t)ρ (1− v)ρ] dv

= (x− t)λ1+λ2−1
∞∑

m=0

∞∑

n=0

σ1 (m)σ2 (n)ω
m+n (x− t)ρ(m+n)

Γ (ρm+ λ1) Γ (ρn+ λ2)

·
∫ 1

0
vλ1+ρm−1 (1− v)λ2z+ρn−1 dv

= (x− t)λ1+λ2−1
∞∑

m=0

∞∑

n=0

σ1 (m)σ2 (n)ω
m+n (x− t)ρ(m+n)

Γ (ρ (m+ n) + λ1 + λ2)

= (x− t)λ1+λ2−1
∞∑

m=0

[
m∑

n=0

σ1 (m− n)σ2 (n)

]
ωm (x− t)ρm

Γ (ρm+ λ1 + λ2)
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= (x− t)λ1+λ2−1
∞∑

m=0

Ω(m)

Γ (ρm+ λ1 + λ2)
[ω (x− t)ρ]m

= (x− t)λ1+λ2−1FΩ
ρ,λ1+λ2

[ω (x− t)ρ] .(22)

The result (20) follows now on using (21) and (22).

3. The convolution integral equation (6)

We apply the results of the previous sections to solve the integral
equation (6).

Theorem 3.1. Suppose sequences σ1 (m) , σ2 (n) (m,n ∈ N) satisfies
(i) σ1 (0) = c1, σ2 (0) = c1, where c1 and c2 are nonzero constants;
(ii) Ω := Ω (m) =

∑m
n=0 σ1 (m− n)σ2 (n) = 0 form ≥ 1 (Ω (0) = c1c2).

Then, if < (α) > < (λ) > 0 and I−α
a+ g ∈ L (a, b), the integral equation

(23)
1

c1c2

∫ x

a
(x− t)λ−1Fσ1

ρ,λ [ω (x− t)ρ]ϕ (t) dt = g (x) (a < x ≤ b)

possesses a solution ϕ in L (a, b) given by

(24) ϕ (x) =

∫ x

a
(x− t)α−λ−1Fσ2

ρ,α−λ [ω (x− t)ρ]
(
I−α
a+ g

)
(t) dt.

Proof. The solution (24) of the integral equation (23) is already achieved
on using the results of Theorems 2.5 and 2.6 in conjunction with the
properties derived in the Propositions 2.3 and 2.4 subject to the bound-
edness condition (12) of Theorem 2.1. To complete the proof, it now
only needs to verify the solution (24) of the integral equation (23). For
this verification, we proceed as follows:

Following (8), equations (23) and (24) can be rewritten as

(25)
1

c1c2

(
J σ1
ρ,λ,a+,ωϕ

)
(x) = g (x)

and

(26) ϕ (x) =
(
J σ2
ρ,α−λ,a+;ω

(
I−α
a+ g

))
(x) .

Substituting (26) into (25) and applying (20), we have

1

c1c2

(
J σ1
ρ,λ,a+,ω

(
J σ2
ρ,α−λ,a+;ω

(
I−α
a+ g

)))
(x) =

1

c1c2

(J Ω
ρ,α,a+;ω

(
I−α
a+ g

))
(x) ,
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where the operator J Ω
ρ,α,a+;ω is explicitly given by

(J Ω
ρ,α,a+;ωf

)
(x) =

∫ x

a
(x− t)α−1FΩ

ρ,α [ω (x− t)ρ] f (t) dt.

Under the conditions (i) and (ii), the kernel function FΩ
ρ,α [ω (x− t)ρ]

reduces to

FΩ
ρ,α [ω (x− t)ρ] =

∞∑

m=0

Ω(m)

Γ (ρm+ α)
[ω (x− t)ρ]m =

c1c2
Γ (α)

and

(J Ω
ρ,α,a+;ωf

)
(x) =

c1c2
Γ (α)

∫ x

a
(x− t)α−1 f (t) dt = c1c2

(
Iαa+f

)
(x) .

Thus

1

c1c2

(
J σ1
ρ,λ,a+,ω

(
J σ2
ρ,α−λ,a+;ω

(
I−α
a+ g

)))
(x) = Iαa+

(
I−α
a+ g

)
(x) = g (x) ,

which completes the proof.

Remark 3.2. By using Theorem 2.5, it can be easily verified that
(23) and (24) imply each other.

We now consider some useful consequences of Theorem 3.1.
If we choose

σ1 (m) =
(γ)m
m!

and σ2 (n) =
(−γ)n
n!

(σ1 (0) = σ2 (0) = 1) ,

in Theorem 3.1, then by applying the Chu-Vandermonde identity [10, p.
387, Eqn. (15.4.24)]:

Ω (m) =
m∑

n=0

(γ)m−n

(m− n)!

(−γ)n
n!

=
(γ − γ)m

m!
=

{
0, m ≥ 1;

1, m = 0,

which obviously satisfies the conditions (i) and (ii) of Theorem 3.1, we
get the result [11, p. 13, Theorem. 8], namely, the solution of (1) can
be expressed by

(27) f (t) = E−γ
α,λ−β,a+;ω+

(
I−λ
a+ g

)
(x) ,

where the operator E−γ
α,λ−β,a+;ω+ is given by (3).

In order to give the next result, we need the following summation
formula concerning the extended Gauss hypergeometric function (9) ob-
tained recently by Luo and Raina [8]
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Theorem 3.3. For m ∈ N, < (p) ≥ 0, < (q) ≥ 0, the following
summation formula holds:

(28)
m∑

n=0

(−m)n (a)n
n! (1− c+ a+ b−m)n

Bp,q (b+ n, c− b)

=
ep−

q
2 (c− a)m

(c− a− b)m
B2q, 1

2
p (c− b+m, b) ,

where the function Bp,q (x, y) is defined by (11).

Employing elementary calculations, we rewrite (28) as

(29) e−p+ q
2

m∑

n=0

(c− a− b)m−n

(m− n)!

(a)n
n!

Bp,q (b+ n, c− b)

=
(c− a)m

m!
B2q, 1

2
p (c− b+m, b) .

Now, let

σ1 (m− n) =
e−p+ q

2

B2q, 1
2
p (c− b, b)

(−b)m−n

(m− n)!

and

σ2 (n) =
(c)n
n!

Bp,q (b+ n, c− b) ,

then it follows that

σ1 (0) =
e−p+ q

2

B2q, 1
2
p (c− b, b)

and σ2 (0) = Bp,q (b, c− b) .

On using (29) (with a = c), we have

(30) Ω (m) =
(c− c)m

m!

B2q, 1
2
p (c− b+m, b)

B2q, 1
2
p (c− b, b)

=

{
0, m ≥ 1;

1, m = 0

which satisfies the condition (ii) of Theorem 3.1. Thus, we have the
following result.

Corollary 3.4. If < (α) > < (λ) > < (β) > 0 and I−α
a+ g ∈ L (a, b),

then the solution of the integral equation

ep+
q
2

B2q, 1
2
p (γ − β, β)

∫ x

a
(x− t)λ−1E−β

ρ,λ [ω (x− t)ρ]ϕ (t) dt = g (x) (a < x ≤ b)
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is given by

ϕ (x) =

∫ x

a
(x− t)α−λ−1Rβ,γ;p,q

ρ,α−λ [ω (x− t)ρ]
(
I−α
a+ g

)
(t) dt,

where E−β
ρ,λ [ω (x− t)ρ] is defined by (2) and the functionRβ,γ;p,q

ρ,α−λ [ω (x− t)ρ]

is given by

(31) Rβ,γ;p,q
ρ,α−λ [ω (x− t)ρ] =

∞∑

n=0

(γ)n
Bp,q (β + n, γ − β)

Γ (ρn+ α− λ)n!
[ω (x− t)ρ]n .

We can further set γ = λ, α = 2λ and ρ = 1 in (31) to get the
following:

Rβ,λ;p,q
1,λ [ω (x− t)] =

∞∑

n=0

(λ)n
Bp,q (β + n, λ− β)

Γ (n+ λ)n!
[ω (x− t)]n

=
1

Γ (λ)

∞∑

n=0

Bp,q (β + n, λ− β)
[ω (x− t)]n

n!

=
B (β, λ− β)

Γ (λ)

∞∑

n=0

Bp,q (β + n, λ− β)

B (β, λ− β)

[ω (x− t)]n

n!

=
B (β, λ− β)

Γ (λ)
1F1

[
β

λ− β
;ω (x− t) ; p, q

]
,(32)

(< (λ− β) > 0)

where the extended Kummer hypergeometric function 1F1

[
β

λ− β
; z; p, q

]

is defined by (10). By using Corollary 3.3 and (32), we obtain the fol-
lowing corollary:

Corollary 3.5. If < (α) > < (λ) > < (β) > 0 and I−α
a+ g ∈ L (a, b),

then the solution of the integral equation

ep+
q
2

B2q, 1
2
p (λ− β, β)

∫ x

a
(x− t)λ−1E−β

1,λ [ω (x− t)]ϕ (t) dt = g (x) (a < x ≤ b)

is given by

ϕ (x) =
B (β, λ− β)

Γ (λ)

∫ x

a
(x− t)α−λ−1

1F1

[
β

λ− β
;ω (x− t) ; p, q

] (
I−α
a+ g

)
(t) dt.
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