• Title/Summary/Keyword: generalized distributions

Search Result 241, Processing Time 0.038 seconds

Evaluation of Global Force and Interaction Body Force Density in Permanent Magnet Employing Virtual Air-gap Concept (가상공극개념을 이용한 연구자석의 전체전자기력과 상호체적력밀도 계산)

  • Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.278-284
    • /
    • 2009
  • The global force and interaction body force density were evaluated in permanent magnets by using the virtual air-gap scheme incorporating the finite-element method. Until now, the virtual air-gap concept has been successfully applied to calculate a contact force and a body force density in soft magnetic materials. These force calculating methods have been called as generalized methods such as the generalized magnetic charge force density method, the generalized magnetizing current force density method, and the generalized Kelvin force density method. For permanent magnets, however, there have been few research works on a contact force and a force density field. Unlike the conventional force calculating methods resulting in surface force densities, the generalized methods are novel methods of evaluating body force density. These generalized methods yield the actual total force, but their distributions have an irregularity, which seems to be random distributions of body force density. Inside permanent magnets, however, a smooth pattern was obtained in the interaction body force density, which represents the interacting force field among magnetic materials. To evaluate the interaction body force density, the intrinsic force density should be withdrawn from the total force density. Several analysis models with permanent magnets were tested to verify the proposed methods evaluating the interaction body force density and the contact force, in which the permanent magnet contacts with a soft magnetic material.

Parameters Estimators for the Generalized Exponential Distribution

  • Abuammoh, A.;Sarhan, A.M.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • Maximum likelihood method is utilized to estimate the two parameters of generalized exponential distribution based on grouped and censored data. This method does not give closed form for the estimates, thus numerical procedure is used. Reliability measures for the generalized exponential distribution are calculated. Testing the goodness of fit for the exponential distribution against the generalized exponential distribution is discussed. Relevant reliability measures of the generalized exponential distributions are also evaluated. A set of real data is employed to illustrate the results given in this paper.

  • PDF

Reliability Calculation of Power Generation Systems Using Generalized Expansion

  • Kim, Jin-O
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.123-130
    • /
    • 1997
  • This paper presents a generalized expansion method for calculating reliability index in power generation systems. This generalized expansion with a gamma distribution is a very useful tool for the approximation of capacity outage probability distribution of generation system. The well-known Gram-Charlier expansion and Legendre series are also studied in this paper to be compared with this generalized expansion using a sample system IEEE-RTS(Reliability Test System). The results show that the generalized expansion with a composite of gamma distributions is more accurate and stable than Gram-Charlier expansion and Legendre series as addition of the terms to be expanded.

  • PDF

ON THE CLASS OF TRANSMUTED-G DISTRIBUTIONS

  • AHMAD, MORAD;AL-AQTASH, RAID;AKINSETE, ALFRED
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.925-931
    • /
    • 2022
  • In this article, we compare the reliability and the hazard function between a baseline distribution and the corresponding transmuted-G distribution. Some examples based on existing transmuted-G distributions in literature are used. Three tests of parameter significance are utilized to test the importance of a transmuted-G distribution over the baseline distribution, and real data is used in an application of the inference about the importance of transmuted-G distributions.

ON RELATIONS FOR QUOTIENT MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION BASED ON RECORD VALUES AND A CHARACTERIZATION

  • Kumar, Devendra
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.327-336
    • /
    • 2013
  • Generalized Pareto distributions play an important role in re-liability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto distribution, and Power distribution. In this paper we establish some recurrences relations satisfied by the quotient moments of the upper record values from the generalized Pareto distribution. Further a char-acterization of this distribution based on recurrence relations of quotient moments of record values is presented.

Transmuted new generalized Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert;Hudson, Irene Lena
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.363-383
    • /
    • 2016
  • The Weibull family of lifetime distributions play a fundamental role in reliability engineering and life testing problems. This paper investigates the potential usefulness of transmuted new generalized Weibull (TNGW) distribution for modeling lifetime data. This distribution is an important competitive model that contains twenty-three lifetime distributions as special cases. We can obtain the TNGW distribution using the quadratic rank transmutation map (QRTM) technique. We derive the analytical shapes of the density and hazard functions for graphical illustrations. In addition, we explore some mathematical properties of the TNGW model including expressions for the quantile function, moments, entropies, mean deviation, Bonferroni and Lorenz curves and the moments of order statistics. The method of maximum likelihood is used to estimate the model parameters. Finally the applicability of the TNGW model is presented using nicotine in cigarettes data for illustration.

Noninformative Priors for the Stress-Strength Reliability in the Generalized Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.467-475
    • /
    • 2011
  • This paper develops the noninformative priors for the stress-strength reliability from one parameter generalized exponential distributions. When this reliability is a parameter of interest, we develop the first, second order matching priors, reference priors in its order of importance in parameters and Jeffreys' prior. We reveal that these probability matching priors are not the alternative coverage probability matching prior or a highest posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that the one-at-a-time reference prior and Jeffreys' prior are actually a second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study and a provided example.

Derivation of Optimal Distribution for the Frequency Analysis of Extreme Flood using LH-Moments (LH-모멘트에 의한 극치홍수량의 빈도분석을 위한 적정분포형 유도)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.229-232
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study.

  • PDF

Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments ( I ) (LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정 ( I ))

  • 맹승진;이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.49-60
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study. GEV distribution for the flood flow data of the applied watersheds was confirmed as the best one among others by the LH-moments ratio diagram and Kolmogorov-Smirnov test. Best fitting order of LH-moments will be derived by the confidence analysis of estimated design flood in the second report of this study.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.