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Reliability Calculation of Power Generaion
Systems Using Generalized Expansion

Jin-0Q Kim

Abstract

This paper presents a generalized expansion method for calculating reliability index in power generation systems. This generalized

expansion with a gamma distribution is a very useful tool for the approximation of capacity outage probability distribution of generation

systemn. The well-known Gram-Charlier expansion and Legendre series are also studied in this paper to be compared with this generalized

expansion using a sample system IEEE-RTS(Reliability Test System). The results show that the generalized expansion with a composite of

gamma distributions is more accurate and stable than Gram-Charlier expansion and Legendre series as addition of the terms to be expanded.

I. Intreduction

Reliability has a wide range of meanings and applications but
the basic intent is to indicate the overall ability of the system to
perform its function. Reliability is considered to be as important
as economy and security of the power system. It is a decision
tool for carrying out the trade-off between the reliable operation
at an acceptable level and coét involved. Also, it provides means
of efficient and optimum economic planning and operation of
electric power systems either over the long or short term period.
A power system can be divided into functional zones of genera-
tion, transmission and distribution. This paper is concemned with
the development of reliability evaluation methods for generation
systems. In generation system reliability evaluation, the most
commonly used index is the Loss of Load Expectation (LOLE).
For the computation of this index, three basic steps are required,

1. development of generation model which describes the pro-
bability and frequency of the capacity outage,

2. development of load model for daily peak or hourly load,

3. convolution of these two models to form a generation reserve
model from which LOLE can be obtained.

The methods to obtain a generation system model which consists
of a large number of units can be broadly classified into two
categories. In the first category are the methods based on
recursive algorithms to describe the discrete characteristics of
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generation capacity probability distribution. The recursive algori-
thms are theoretically accurate for calculating the discrete probability
distributions of generation capacity outages. These discrete
probability distributions result from the underlying discrete proba- -
bility distributions used to describe individual generating units.

Such an approach is, however, computationally expensive,
especiaily when it is used repetitively for large power systems. In
the second category are the indirect analytical methods which use
the first few terms of some infinite expansion to model the
generation system as a continuous distribution approximation.
These methods .are computationally fast and simple. Hence, many
continuous probability models have been proposed as efficient
alternatives for the discrete probability models. Stremel and
Rau[1] and Rau and Schenk[2] employed Gram-Charlier expan-
sion based on the concept of cumulants to approximate the
discrete distribution of the probability of capacity outage, and
these were further improved by using Edgeworth type expansion
obtained by rearranging the terms in Gram-Charlier series for the
small power systems by Levy and Kahn{3]. These expansions
using Normal distribution, however, as indicated by Mazumdar
and Gaver[4], could result in inaccuracy and instability for
approximating the distribution due to the inherent characteristics
of Normal distribution.

To overcome of these poor distribution fitting, Gross, Garapic
and McNutt have proposed the mixture of Normals approximation
technique[5] in which the distribution curve was partitioned into
several classes, and the whole distribution curve was reconstructed
by the mixture of Normal distributions of each partitioned curve.
In addition to the expansions of Gram-Charlier and Edgeworth
type which employed Chebyshev-Hermit polynomials based on
Normal distribution, the application of the method of cumulants
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using the other orthogonal polynomials has proposed by some
authors; such as Laguerre polynomials by Tian, et al[6] and
Legendre series by Jorgensen[7]. These orthogonal polynomials
are defined on the interval [0,00) which is more appropriate to
represent the load and generator outage distribution in stead of using
the interval as appeared on the Chebyshev-Hermit polynomials.

This paper describes two basic methods to calculate these indices:
recursive method and continuous distribution model method using
Gram-Charlier expansion, Legendre series, and a generalized
expansion method. It also provides some test results and compari-
sons using these methods with a sample system IEEE-RTS
(Reliability Te‘ét System)[8]. The results show that the generalized
expansion with a gamma distribution is more accurate and stable
than Gram-Charlier expansion and Legendre series as addition of
the terms to be expanded.

II. Generation Model

1. Development of Generation Model by the Recursive Method

In the recursive algorithm, the cumulative probability of capacity
outage are calculated by unit addition algorithms. These algori-
. thms proceed by updating the generation system model by adding
one unit at a time. One form of such algorithms for two state
units is the summation of conditional probability[12],

P(X) = (l—pi)Pg_i(X) + pipg_i(X_Qi) @

where P.(X) and P,(X) represent probabilities of capacity
outage greater than or equal to X, before and after unit i is added,
and Q; and p; are capacity outage and forced outage rate of unit
i, respectively. Figure 1 shows cumulative probabilities calculated
by the recursive method for IEEE-RTS with the values of normal
FOR(Forced Outage Rate) and FORs divided into 2 and 4.

Therefore, the exact cumulative probability table P,(X) is
obtained from the recursive method, or it can be approximated by
the continuous distribution models as described on the next
section. Once the cumulative outage table is determined, the
reliability index LOLE can be evaluated easily.

LOLE is defined as the summation of the probability of
generation deficiency for all hourly load. From the definition of
cumulative probability P,(X), the annual index LOLE can be

obtained by
yH
LOLE= 21 PC-L)) ¥)]
f=

where YH is total hours in a year (8760 hours), C is total
installed capacity and L; is hourly load during a year.

2. Calculation of Generation Model by Continuous Distribution
Method

Many papers based on continuous distributions have appeared
in the literature as an alternative to the recursive method to save
computation time but maintain an acceptable accuracy. Probably
the most widely used expression consists of an expansion in terms
of Normal distribution. There are several variations on this
approach such as Gram-Charlier{1], Edgeworth[3], mixture of
Normals[5] and the modified version of the Gram-Charlier
expansion[2]. Although they improve the throughput of indices
calculation, they have some common drawbacks.

In this section, Gram-Charlier expansion and the recently
published Legendre series method{7] are discussed and the results
from these are shown in comparison with the results from the
recursive method used as reference values.

Gram-Charlier Expansion

The standard Normal (or Gaussian) probability density function
and its derivatives are used in the Gram-Charlier expansion as its
basic elements and expansion terms. A density function p(x) can
be expanded in a series of derivative of Gaussian density function

&(x),
Ko = 3 e 3

which is referred to Gram-Charlier series. In this equation, H,(x)
are known as Chebyshev-Hermit polynomials and ¢, is the

coefficients of Gram-Charlier series, which are given as,

H(x) = 3 A(k)x*¥ | ' @

e = G BAG Imey ®)
where

Ak ) = (—1)’#5)% ©

r = rounded-off integer value of k/2

In the expression of the coefficients ¢,, m;’s are initial moments

of the density function p(x) of the capacity outage of system
with sy =1, and therefore, it is seen from (3) that any discrete

density function p(x) can be expressed by Chebyshev-Hermit
polynomials and the moments. o
If p(x) is standardized, then m, =0, m, =1 and the first three

coefficients in (5) are given as ¢;=1and ¢, =c, =0. There-

fore, Gram-Charlier series (3) can be simplified as

M) = D1+ gackﬂku)] )

Then, the cumulative probability is given by
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PAX) = [ aad + g(x) 3 e ®
using the equations (5) and (7).

Legendre Series

It has been observed{7] that when the original random variables
are bounded on the finite interval, i.e., the minimum and the
maximum values for generation or load, it is better to use the
random variables bounded on the finite interval rather than to use
the ones defined for an infinite interval such as Gram-Charlier
expansion. The Legendre series bounded on the interval (0,1) has
been proposed recently to calculate the production cost and
reliability indices[7]. The basic idea of the method of the
Legendre series is as follows.

The orthogonal polynomials J,(H of the Legendre series are
defined by

J(D = }é}oB(n,k)t”_k ©)
where
B(n, k) = (-l)k% 10$)

Any density function p(#) can then be expressed using the
Legendre series,

Ko = Fa.70 ay

The coefficients «,’s are determined by multiplying /,(z} on both
sides of (11) and integrating,

a, = (2r+1) ;03( v, m,_; 12

Applying these probability tables or functions obtained from
either recursive, Gram-Charlier expansion or Legendre series, the
LOLE can be calculated using equation (2).

IMl. Generalized Expansion

It was shown[9] that any discrete distribution can be expressed
in terms of another distribution and its expansion using Fourier
transformation. This generalized expansion is a very useful tool
for the approximation of capacity outage probability distribution
of generation system. The well-known Gram-Charlier expansion
becomes a special case of this generalized expansion. In this
section, the relationships for determining the distribution parame-
ters from the generating unit parameters for two, three and
generalized 2n-parameter gamma distributions are derived and
these distributions are tested on a sample systems with normal

and low FORs.

1. Generalized Expansion

The method described in this section is a generalization of the
expansion methods. This method provides a generalized approach
for expanding a given distribution in terms of another distribution.

The discrete probability distribution of a generation system can
be approximated by a continuous probability distribution using
Fourier and inverse Fourier transformations which give a general
formula for the expression of any discrete distribution in terms of
any continuous distribution and its derivatives[9],

> iDi

wx) = Z(~DF N2 - (13)
where

#x) = discrete density function of generation system

f(x) = continuous density function to be used for expanding p(x)

%) = i—th derivative of f(x)
and
S
D; = mi—pi— Z:l( r)#i—rDr 14)

where m; and g, are i~th moments of p(x) and f(x), respec-
tively. It can be shown that the coefficients D;’s have recurrence

relationships as
DO =1
D= ¢, (15
=1, s )
Di = é//+ rgl(]fl) ;i—rDr. ]22
where
& = gt
¢, ¢l = i—th cumulant of p(x), F(x), respectively.

If the continuous density function f(x) contains r parameters
and if these r parameters can be estimated by matching the first
r moments of p(x), then the first r cumulants of A(x) and p(x)
are equal, ie.,

e =1, i=1,r 16)
and therefore the first r coefficients should be zero,
Dy=1, Dy=-+=D,=0 an

It can be seen that the well-known Gram-Charlier expansion is
only a special case of this general formula using Normal
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distribution,

« D;

o) = 3 He) (18)
where g(x) and H(x) are Normal density function and Chebyshev-
Hermit polynomials, respectively, and D;’s are the same with

(15) except that D,=D,=0 and ¢/=0 (i>2). -

2. Application to the Gamma Distributions

The generalized expansion described above is applied to the
gamma distributions with two, three, and multi-parameters in this
section.

(A) Two Parameter Gamma Distribution
The two parameter gamma density function is

_ 1 a_—px a-1"
filx) = R °e 00, >0, and x20 19
where
o = scale parameter of the gamma distribution,
a = shape parameter,
I(-) = gamma function.

From the moment generating function of the two parameter
gamma distribution, j-th moment is given by

at

w = Dekd 20)
o'a)

When two moments are matched, ie., u,=m,, p,=m, where

m; is i-th moment of generation system, then the two parameters

of (19) and (20) can be determined by the system moments,

m}

=3
my — . (21)
- a )
o m

Applying (19) and (21) to (13) gives the expression for cumu-
lative probability of capacity outage of generation system using
the two parameter gamma density function,

PAX)

“ Ndx
J;{ * 22)

2 htwde+ 23(—1)’%6"‘”@)

since D,=D,=0. The remaining coefficients D; (;=3) can be
determined with ¢/ and ¢? by using (15). The cumulants of two
parameter gamma density function ¢/ are obtained from the

moments expression (20), equation (21), and the relationship

between moments and cumulants. The cumulants ¢? are obtained
from the moments m; of capacity outage of generation system.
The generalized expression of i-th derivative of f,(x) in (22)

can be obtained as follows. The first derivative of £(x) is
L(x) = f(ux) . (23)

where o(x) = (e—1)/x — p. Generally, taking (i-1)-th derivative of
(23) gives

fé’)(X) — '21( l'—l)fz(i—l—r)(x)'u(r)(x) (24)
r=0 4
where
0 Ox) = v(x) = a;I -0
o () = (—1)'%1, r=1 : 25)

(B) Three Parameter Gamma Distribution
The three parameter gamma density function is

fg(x) — ]’(la) pae —p(XVd)(x__d)a*l . (26)

where d is shifting parameter. When three moments are matched
to determine these three parameters, it can be shown that

A

-
@ = My’ @7
d = ml—%

where M,’s are central moments of generation system, i.e.,

M, = é( N=mm, e

.,=0
The cumulative probability PX) is the same as (22) except that
Dy=D,=Dy=0, ) ‘

PO = [ h(det B-DBE A0 @9

The cumulants ¢/ involved in the expression of D, are deter-
mined using the moments p; of the three parameter gamma -

density function f3(x),

_ L0\ i
w= 2w, (30)
where
u, = Na+7r)
’ o)
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The expression for fi’(x) is also the same as (24) except that
(x—d) should be used rather than x due to the shifting parameter
d, ie.,

%% = £ (x—d) (31

3. Generalized Multi-Parameter Gamma Distribution

The proposed approach postulates multi-parameter distributions
for the probability of generating capacity outage and then deter-
mines the parametei's of these distributions from the generating
unit parameters by using the moment matching technique. Theo-
retically if all the moments of any two distributions are equal,
then the two distributions are identical. In practice by equating
only a few moments, combinations of exponentials have been
shown to reasonably approximate several well known distributions.

Combinations of exponential and gamma distributions have
been shown the capability of approximating a wide variety of
distributions[10]. A distribution consisting of the weighted sum of
gamma distributions is, therefore, proposed for modeling of capa-
city outage. This 2n-parameter distribution is given by equation (32).

Son(%) glwifz(x | 0:,a)

(32

1 z n.p TP a1
I‘(a) iglw“ole (pzx)
where

folx|p;, @) = two parameter gamma distribution with parameters p; and @,
p;= scale parameter of the i—th gamma distribution,

@= shape parameter assumed the same for all the » distributions,

and the weighting factors w; :

o =1 0<e<] 33)

Parametets of multi-parameter distribution f,,(x) can be deter-
mined by the moments of the distributions from generating unit
parameters. The 2n parameters of fo,(x) are a, o1, 0, and
w,,*, w,_, Since w, can be obtained from w, ", W, by
using equation (33). These parameters are obtained by using the
moment matching technique. If all the moments of two
distributions are equal, then the two distributions are identical. In
practice, reasonable approximation can be obtained by matching a
few moments.

The 21 non-linear equations are obtained by matching the first
2n moments of f,,(x) with those of the capacity outage. How-
ever, this set of non-linear equations is very sensitive to the initial
values, and without knowing the initial values near exact
solutions, it cannot be solved by general Newton-Raphson type
methods. In this paper, the Complex method is used to obtain 2n
parameters, which is a kind of Simplex method extended to the

non-linear cases with the initial values selected randomly[11].

Once f,,(x) is known, then the cumulative probability of capa-
city outage required in generation capacity studies is easily
obtained as follows;

-1
PUX) = gl[m,e"’fx]_zjzl—((";—fl))!—l (34

Since it has been observed in this paper that increasing the
number of expansion terms does not contribute to the accuracy at
more than 6 parameters used, the number of parameters (or
moments) instead of expansion terms is increased in order to
improve the accuracy.

IV. Case Studies

To test the accuracy of the proposed multi-parameter method,
IEEE-RTS is adopted. This system consists of 32 generating units
ranging' from 12 to 400 MW capacities. The FORs are in the
range of 0.01 to 0.12. The generation capacity is 3405 MW with
the peak load of 2850 MW. The unit data for this system is
shown in reference {8]. This appears to be a reasonable system to
test the accuracy of the proposed method and compared with
other methods since it has a mixture of small and large units.
Several sets of studies (the Gram-Charlier, Legendre series, and
multi-parameter gamma distributions) were conducted by varying
the FORs and expansion terms. First, the cumulative probabilities
of capacity outage are obtained by recursive method and the other
continuous distribution methods, and then, using these results,
LOLEs for power generation system are calculated and compared
for each case.

1. Cumulative Probability of Capacity Outage

Figures 2, 3 and 4 show the cumulative probabilities of the
IEEE-RTS system obtained by the method of Gram-Charlier expan-
sion with the distribution term only and 1 expansion term
included, and 6 and 10 parameter gamma distributions, compared
with the results from the recursive method in cases of normal
FOR and FORs divided by 2 and 4, respectively.

It can be seen from Figure 2 that when the FORs are normal,
as the number of expansion terms is increased, Gram-Charlier
curve appears to be fitted to the recursive. In the case of FORs
divided by 2 and 4, however, it can be seen from Figures 3 and
4 that the employment of more expansion terms causes fluctua-
tions and numerical instability. Particularly, when FORs are
divided by 4, the exact discrete results of the cumulative probability
do not form a smooth curve and it is harder to fit a continuous
distribution to it. On the contrary, it can be seen that 6 and 10
parameter gamma distributions are well on the track of recursive

curves for all cases of FORs.
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CUMWATIVE PROB. FOR CAPACITY OUTAGE

. NORMAL FOR

0.8

~ = ~ ~ FOR DMVDED BY 2

CAPACITY OUTAGE (Mw)

Fig. 1. Cumulative Probability of Capacity Outage by Recursive
Method for IEEE-RTS.

CUNMULATVE PROS. (FOR DVIDED BY 1)

=y v T T T T
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0.8

-~ GRAM : DISTRIBUTION ONLY

.- GRAM : 1 EXPANSION TERMS

06

~ 8 PARAMETERS

PROBABILITY
-
!

0.4

-.= 10 PARAMETERS

02

CAPACITY QUTAGE (Mw)

Fig. 2. Cumulative Probability using Gram-Charlier and Multi-
parameter Gamma(Normal FOR).

2. LOLE by Expansion Terms and Multi-parameter

The comparison of LOLE by the Gram-Charlier expansion and
Legendre series with the recursive method is shown in Table 1.
For normal FORs in the range from 0.01 to 0.1, the Gram-
Charlier gives results close to the recursive method. However,
when all FORs are divided by 2 which makes their range quite
small 0.005 to 0.05, the Gram-Charlier has large percentage
deviations from the recursive method. For the FORs divided by 4,
ranging from 0.0025 to 0.025 which are unreasonably low, Table
1 doesn’t show any meaningful results.

Table 1 also shows the LOLEs by the Legendre series for
comparison. For the normal case of unmodified FORs, the
Legendre series shows a lot of variation but at some points does
come close to the recursive method. There is no uniform conver-
.gence and it is hard to know where to stop. When the FORs are
divided by 2 or 4, the results show no relationship to the
recursive values at all. Even if the normalized moments are

CUMULATIVE PROB. (FOR OMOED BY 2)

1.0

— RECURSIVE METHOD

08

-- GRAM : DISTRIBUTION ONLY

(X

LN . ... GRAM : 1 EXPANSION TERMS

~ 6 PARAMETERS

PROBABILITY
-

0.4
-

N —.. 10 PARAMETERS

0.2
T

CAPACITY QUTAGE (MW)

Fig. 3. Cumulative Probability using Gram-Charlier and Multi-
parameter Gamma(FORs divided by 2).

CUMUATIVE PROB. (FOR DIVIDED BY 4)

1.0

~— RECURSIVE METHOD

08

-- GRAM : DISTRIBUTION ONLY

-- GRAM : 1 EXPANSION TERNS

0.8

- « & PARAMETERS

PROBABILITY

— 10 PARAMETERS

CAPACITY OUTAGE (MW)

Fig. 4. Cumulative Probability using Gram-Charlier and Multi-
parameter Gamma(FORs divided by 4).

(1) Gram-Charlier Expansion
(2) Legendre Series

used as mentioned in the discussion of [7], the results still have
quite large errors from the recursive method and show numerical
instability when the number of terms used is increased. In this
Tables 1, it can be seen that the result from this Legendre series
are worse than those from the Gram-Charlier.

Table 2 shows the LOLEs by the 2, 3, and 6 parameter gamma
distributions with their expansion terms. It can be seen from
Table 2 that none of these distributions by themselves can give as
accurate results as the multi-parameter distribution. With expan-
sion terms added, the results are better but not as good as the
distribution only with the number of parameters increased.

We can make sure of this fact from Table 3, where it can be
seen that the generalized multi-parameter distribution model
provides LOLE index quite close to the recursive method for
eight and more moments. Also there is no significant variation in
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Table 1. Comparison of LOLE by Gram-Charlier and Legendre

Series.
FOR normal case divided by 2 divided by 4
Expansion
Terms 1) @ 00 @ 1 2
1 1.81 641.78 0.02 384.94 4x10° 25651
2 7.17 53218 | 025 21585 | 2X10° 56.41
3 9.32  -163.63 051 -276.50 6x10° -318.46
4 9.06 -421.17 | 0.66 -527.18 0.01 -559.60
5 977 -133.84 1.01 -153.34 0.03 -151.32
6 941 -151.18 144  -127.02 0.09 -102.48
7 9.38 -59.92 1.59 -64.32 0.19 -59.40
8 9.33 -39.99 1.52 -44.37 0.33 -42.50
9 9.39 -20.54 | 1.32 -22.67 043 -17.51
10 9.55 -7.06 | 122 -0.47 034 11.19
11 9.50 0.89 1.32 440 |-0.07 12.66
12 9.50 20.27 1.44 3195 |-0.53 43.66
13 9.42 14.27 1.34 18.44 -0.01 25.30
14 9.40 15.60 1.10 12.81 2.38 13.48
15 9.41 14.05 1.07 10.88 4.52 11.88
16 941 13.81 1.42 7.60 | -096 6.86
17 9.44 13.42 1.77 735 |-18.5 6.81
Recursive 9.39 1.35 0.24

Table 2. Comparison of LOLE by gamma distributions with their
expansion terms.

FOR
No. of |No. of expansion normal case |divided by 2|divided by 4
parameters terms

1 28.36 9.14 3.57

) 2 24.16 8.33 3.40

3 18.00 6.92 3.07

4 11.55 5.08 2.61

1 12.86 2.88 0.87

3 2 12.86 2.88 0.87

3 1133 2.60 0.82

4 9.72 2.13 0.71

1 9.35 1.27 0.19

6 2 9.28 1.26 0.18

3 9.26 1.27 0.18

4 9.46 1.32 027

Recursive 9.39 1.35 0.24

accuracy after ten moments. The author’s experience with this
method indicates that use of 8 to 10 moments gives quite
accurate results. It should also be noted that the solution exists
for all even moments.

Following conclusions can be drawn from the results of these
studies :

1. For the small values of FORs, the irregularity in the exact
discrete model increases, and therefore, it is harder to fit

Table 3. Comparison of LOLE by multi-parameter distribution

without expansion terms.

FOR normal case divided by 2 | divided by 4
No. of parameters
6 9.35 127 0.19
8 9.51 1.33 022
10 943 1.31 0.22
12 9.44 1.33 0.22
14 9.44 1.33 0.22
16 943 1.33 022
18 9.44 1.33 022
Recursive 9.39 1.35 024

continuous distributions to the exact model.

2.

The methods using a series expansion based on Normal
distribution work well only when the system is large,
homogeneous, and reasonable FORs. However, the results
obtained from these Normal type distributions and expan-
sions are likely to be inaccurate for small systems, or
systems with small forced outage rate units.

. The first three or four terms of the expansion could be used

to improve the accuracy of the solution. Addition of more
terms, however, does not ensure higher accuracy of the
calculated indices.

. The most recently published paper using Legendre series still

has the same problems, and when the FORs are divided by
2 and 4, it completely breaks down.

. The proposed generalized multi-parameter distribution model

method is stable. Methods based on expansions may
fluctuate widely with the addition of more terms. The pro-
posed method is, however, steady and stable as the number
of parameters is increased.

. The proposed approach is conceptually attractive since the

distribution is easily integrable and provides a simple
equation for reliability. The parameters of this distribution
can be easily calculated and modified if new units are added

or removed.

. Although the excellence of the proposed method has been

shown from the case studies, not from the strict mathe-
matical proof, the author’s experience with other sample
systems reveals the similar results as discussed above.

. From the cases studied, the multi-parameter model appears

to be a good altemative approach for generation capacity
reliability evaluation.

V. Conclusion

Generalized multi-parameter distribution model is compared in

this paper with the Gram-Charlier and Legendre series. From the

cases studied, the proposed multi-parameter model appears to be
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more accurate than any other methods with higher expansion
terms. It seems because the use of more moments implies that
more information of the system is utilized. It appears, moreover,
that using higher moments in a higher parameter distribution
provides better results than using more expansion terms.
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